你好,游客 登录 注册 发布搜索
背景:
阅读新闻

基于K-L散度的恶意代码模型聚类检测方法

[日期:2014-12-15] 来源:计算机工程  作者:边根庆 龚培娇 邵必林 [字体: ]

基于K-L散度的恶意代码模型聚类检测方法

边根庆 龚培娇 邵必林

在云计算应用环境下,由于服务系统越来越复杂,网络安全漏洞和被攻击情况急剧增加,传统的恶意代码检测技术和防护模式已无法适应云存储环境的需求。为此,通过引入高斯混合模型,建立恶意代码的分层检测机制,使用信息增益和文档频率等方法分析和提取样本数据特征值,结合K-L散度特性,提出基于K-L散度的恶意代码模型聚类检测方法。采用KDDCUP99数据集,使用Weka开源软件完成数据预处理和聚类分析。实验结果表明,在结合信息增益和文档频率进行特征分析的前提下,与贝叶斯算法相比,该方法在虚拟环境中恶意代码的平均检测时间降低16.6%,恶意代码的平均检测率提高1.05%。


基于K-L散度的恶意代码模型聚类检测方法

 

收藏 推荐 打印 | 录入:574107552 | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款