你好,游客 登录 注册 搜索
背景:
阅读新闻

[PDF]基于改进k-means算法的海量智能用电数据分析

[日期:2014-10-23] 来源:电网技术  作者:赵莉 候兴哲 胡君 傅宏 孙洪亮 [字体: ]

基于改进k-means算法的海量智能用电数据分析

赵莉 候兴哲 胡君 傅宏 孙洪亮

针对智能用电数据挖掘面临数据量大、挖掘效率低等难题,进行Map-Reduce模型下基于改进k-means的海量用电数据分析研究。以家庭用户为例,建立了家庭用户用电信息的家庭用户号、房屋面积、家庭成员数、每天用电量、峰谷电量、家用电器数等的数据维度模型,利用k-means算法简单、收敛速度快的优势,克服其容易陷入局部最优解的缺陷,综合考虑初始聚类中心的选择及聚类个数的选取2个因素,以数据对象密度的大小作为初始聚类中心的选取标准,将簇间距离及簇内对象的分散程度作为聚类数目选择的重要参考,对k-means算法进行改进;为提高数据处理效率,进行Map-Reduce处理模型下的海量家庭用户用电数据的并行挖掘。通过在Hadoop集群上进行实验,结果证明提出的算法运行稳定、高效、可行,且具有良好的加速比。


基于改进k-means算法的海量智能用电数据分析

收藏 推荐 打印 | 录入:574107552 | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款