你好,游客 登录
背景:
阅读新闻

用于DBA和应用开发人员的Azure SQL智能特性

[日期:2017-11-09] 来源:36大数据  作者: [字体: ]

  

大数据

  作者:Jeff Martin

  在PASS 2017峰会期间,InfoQ有机会参加了Microsoft Azure SQL数据库工程团队针对媒体的一次演讲活动。演讲聚焦于Azure SQL数据库中的一些新特性,这些特性设计用于为DBA和应用开发人员提供更便捷的数据库管理职能。Microsoft将这些特性称为“内建智能”,而不是称为构建于Azure SQL Server平台上的操作。

  演讲介绍了三类不同的特性,即性能管理智能、自适应查询处理和安全智能,每类特性针对的都是如何改进数据库操作的有效性。在本文中,我们将依次介绍每类特性,并对其中一些只是达到公共预览版但尚未达到一般可用版(GA)的特性做出特别指明。

  性能管理智能(Performance Management Intelligence)

  智能洞悉(Intelligent Insights);

  自动优化(Automatic Tuning);

  相关的服务层建议(Service Tier Advisor)。

  Intelligent Insights是Azure SQL用于监控破坏性事件查询操作的一种过程。一旦有查询表现出回退的迹象,它就会给出纠正问题的建议。演讲中给出了一个例子,即席查询A触发了资源限制,进而影响到现有查询B的性能。这时Azure SQL会给出建议,或者关闭该即席查询,或者增加Azure估价层以提供更多可用资源。注意,Intelligent Insights目前是公共预览版。

  在启用Automatic Tuning后,Azure SQL就可以监控数据库性能。该特性会试图去创建缺失的索引,或者删除非在用的和重复的索引,以对性能进行改进。使用该特性无需更改应用层。

  Service Tier Advisor(STA)是一种管理工具,它给出了应用工作负载的仪表盘,并对如何优化Azure在用的估价层给出建议。例如,就消耗的资源而言,某个数据库可能存在对资源付费过多的问题,STA会建议使用具有更好性价比的低性能层。反之,如果另一个数据库可能存在缺少资源的问题,它可从定价更高的资源中获益。该工具使得管理人员可在达成业务需求的同时,更有效地使用数据库预算。

  自适应查询(Adaptive Query)

  自适应查询遵循“学习-自适应-验证”的基本原理。在查询优化中,使用了基数估计过程去智能决策查询运算的操作顺序和物理算法,以达成最优的查询性能。如果查询代价的估计值不准确,会产生很多消极行为,包括查询响应缓慢、资源的过量使用和吞吐量的降低。我们当然要避免这些问题,应基于基数估计对查询的执行类型做出正确决策。

  安全智能(Security Intelligence)

  鉴于存在各种数据泄露问题,网站黑客问题也很突出,因此保持数据库处于保护状态显然是至关重要的。此外,还应考虑到政府和专业机构出台的各项规定。数据库的安全性的确是不容忽视的。

  漏洞评估(Vulnerability Assessment,VA)当前处于公开预览版。推出该特性意在帮助DBA监控并改进数据库的安全性。它在执行中会扫描可用的数据库,发现未得到保护的数据和不正确的配置,并给出达到合规报告要求的详细报告。更好的是,它不仅可用于本地部署的SQL Server,而且可用于Azure SQL数据库,为它们的环境提供保护。

  VA使DBA从多个方面受益。首先,它扫描数据库以发现不安全的敏感数据(即SSN),并对如何保护这些数据提出建议。其次,它提供了确保可应用各种最佳实践(例如防火墙、审计、加密等)的检查。第三,它追踪变更随时间的变化情况,以便在建立安全基线后可对变更情况进行监控,确保系统将来不会偏离设置。注意,VA目前是公开预览版。

  威胁检测(Threat Detection)在启用后,是一种永远在线运行的工具,它实时监控数据库中的SQL注入攻击、异常行为和安全漏洞。它一旦检测到问题,就会向DBA发出警报,使得DBA可采取修补措施。不同于VA,它不是静态的,因此可以在威胁发生时就做出检测。

推荐 打印 | 录入:Cstor | 阅读:
相关新闻      
本文评论   
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款