你好,游客 登录
背景:
阅读新闻

[期刊]Spark内存管理及缓存策略研究

[日期:2017-07-17] 来源:计算机科学  作者:孟红涛,余松平,刘芳,肖侬 [字体: ]

Spark内存管理及缓存策略研究

孟红涛,余松平,刘芳,肖侬

Spark系统是基于Map-Reduce模型的大数据处理框架。Spark能够充分利用集群的内存,从而加快数据的处理速度。Spark按照功能把内存分成不同的区域:Shuffle Memory和Storage Memory,Unroll Memory,不同的区域有不同的使用特点。首先,测试并分析了Shuffle Memory和Storage Memory的使用特点。RDD是Spark系统最重要的抽象,能够缓存在集群的内存中;在内存不足时,需要淘汰部分RDD分区。接着,提出了一种新的RDD分布式权值缓存策略,通过RDD分区的存储时间、大小、使用次数等来分析RDD分区的权值,并根据RDD的分布式特征对需要淘汰的RDD分区进行选择。最后,测试和分析了多种缓存策略的性能。


Spark内存管理及缓存策略研究

推荐 打印 | 录入: | 阅读:
相关新闻      
本文评论   
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款