你好,游客 登录
背景:
阅读新闻

[期刊]基于KD树划分的云计算DBSCAN优化算法

[日期:2017-05-09] 来源:计算机工程  作者:陈广胜 程逸群 景维鹏 [字体: ]

基于KD树划分的云计算DBSCAN优化算法

陈广胜 程逸群 景维鹏

在并行RDD-DBSCAN算法的数据划分和区域查询过程中会对数据集进行重复访问,降低了算法效率。为此,提出基于数据划分和融合策略的并行DBSCAN算法(DBSCAN-PSM)。利用KD树进行数据划分,实现数据分区与区域查询步骤的合并,从而减少数据集的访问次数以及降低I/O过 程对算法效率的影响。采用判定数据点自身属性的方式,对标注为边缘点的数据进行融合,避免全局标记的额外时间开销。实验结果表明,DBSCAN-PSM算法相比RDD-DBSCAN算法可节省18%左右的运行时间,适用于处理海量数据聚类问题。


基于KD树划分的云计算DBSCAN优化算法

 

推荐 打印 | 录入: | 阅读:
相关新闻      
本文评论   
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款