你好,游客 登录 注册 发布搜索
背景:
阅读新闻

[PDF]基于Hadoop的海量嘈杂数据决策树算法的实现

[日期:2015-05-08] 来源:计算机应用  作者:刘亚秋 李海涛 景维鹏 [字体: ]

基于Hadoop的海量嘈杂数据决策树算法的实现

刘亚秋 李海涛 景维鹏

针对当前决策树算法较少考虑训练集的嘈杂程度对模型的影响,以及传统驻留内存算法处理海量数据困难的问题,提出一种基于Hadoop平台的不确定概率C4.5算法——IP-C4.5算法。在训练模型时,IP-C4.5算法认为用于建树的训练集是不可靠的,通过用基于不确定概率的信息增益率作为分裂属性选择标准,减小了训练集的嘈杂性对模型的影响。在Hadoop平台下,通过将IP-C4.5算法以文件分裂的方式进行MapReduce化程序设计,增强了处理海量数据的能力。与C4.5和完全信条树(CCDT)算法的对比实验结果表明,在训练集数据是嘈杂的情况下,IP-C4.5算法的准确率相对更高,尤其当数据嘈杂度大于10%时,表现更加优秀;并且基于Hadoop的并行化的IP-C4.5算法具有处理海量数据的能力。


基于Hadoop的海量嘈杂数据决策树算法的实现

 

收藏 推荐 打印 | 录入:574107552 | 阅读:
相关新闻      
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款