你好,游客 登录 注册 发布搜索
背景:
阅读新闻

基于MapReduce的空间敏感性分析并行算法设计

[日期:2015-01-14] 来源:地球信息科学  作者:李帆 何洪林 任小丽 张黎 路倩倩 于贵瑞 [字体: ]

基于MapReduce的空间敏感性分析并行算法设计

李帆 何洪林 任小丽 张黎 路倩倩 于贵瑞

近年来,随着遥感空间数据广泛应用于生态系统,推动了区域尺度生态遥感参数模型的发展。敏感性分析对识别模型关键参数,降低模型不确定性和完善模型具有重要作用。区域尺度的生态遥感参数模型,在进行模型参数敏感性分析时,由于涉及到空间数据的复杂运算,单机环境无法满足快速分析的要求。为了提高生态遥感参数模型空间敏感性分析效率,本文以青藏高原为研究区域,利用植被光合模型VPM(Vegetation Photosynthesis Model)和开源云计算平台Hadoop,设计和实现了基于Sobol′ 的生态遥感参数模型空间敏感性分析并行算法,并在实验室集群环境下进行算法分析,验证了算法的有效性和适用性。该算法的核心是利用MapReduce 并行编程技术,对空间敏感性分析中的地图抽样和模型迭代过程进行任务分割,将分割后的子任务分配至不同的计算节点进行并行计算。实验表明,本文提出的并行策略,能有效缩短地图抽样和模型迭代计算时间,相比于单机算法,并行算法的运行速度提高了14倍左右


基于MapReduce的空间敏感性分析并行算法设计

收藏 推荐 打印 | 录入:574107552 | 阅读:
相关新闻       算法 
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款