你好,游客 登录 注册 发布搜索
背景:
阅读新闻

[期刊]MALK:一种高效处理大规模键值的MapReduce框架

[日期:2014-12-19] 来源:计算机研究与发展   作者:郑亚松 王达 叶笑春 崔慧敏 徐远超 范东睿 [字体: ]

MALK:一种高效处理大规模键值的MapReduce框架

郑亚松 王达 叶笑春 崔慧敏 徐远超 范东睿

内存申请是引发共享存储系统上MapReduce性能下降的主要瓶颈之一,特别是对于需要处理大量键值的应用尤为严重.为了解决此问题,提出了一种内存开销低、能高效处理大规模键值的MapReduce并行计算框架——MALK(high-efficient MapReduce for applications having large amount of keys).MALK对于离散的大规模键值采用连续的存储管理方法,避免了大量小块内存的申请;通过更细粒度地处理Map阶段的任务和流水化Reduce阶段的任务,来减少系统运行过程中同时活跃的数据量,从而将应用程序对内存的需求控制在一个较小的范围内;并提出一种Hash表的复用机制,通过复用Hash表的存储空间来避免流水过程中Hash表内存的重复申请;MALK还综合考虑了任务的粒度和数量对任务管理开销和整体性能的影响,把Reduce阶段的任务数量设成对系统性能最优的值.实验结果表明:相对于Phoenix++,MALK的性能最高可提升3.8倍(平均2.8倍);在Map和Reduce阶段,MALK最多可节省95.2%和87.8%的存储空间;MALK在Reduce阶段还取得了更好的负载均衡,降低了L2和LLC Cache的缺失率. 


MALK:一种高效处理大规模键值的MapReduce框架

 



收藏 推荐 打印 | 录入:574107552 | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款