你好,游客 登录 注册 发布搜索
背景:
阅读新闻

[PDF]基于最大熵功率谱估计的Hadoop高速数据访问

[日期:2014-09-12] 来源:科技通报  作者:李昌 陈金花 [字体: ]

基于最大熵功率谱估计的Hadoop高速数据访问

李昌 陈金花

提出一种基于最大熵功率谱估计的Hadoop云平台下网络音视频数据特征挖掘方法,实现对数据信息的高速访问。构建数据挖掘Hadoop云平台和数据挖掘访问模型,设计最大熵功率谱特征提取算法,采用分段思想将同一时间段的视音频数据进行群体分割,分段提取最大熵功率谱特征。将提取的特征信息进行维度匹配分箱和溯源处理,实现信息恢复,最终完成高速数据访问。仿真测试表明,该算法能有效地实现对网络音视频数据的特征挖掘,提高访问效率,访问响应时间较当前方法缩短明显。


基于最大熵功率谱估计的Hadoop高速数据访问

收藏 推荐 打印 | 录入:574107552 | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款