基于MapReduce的高能物理数据分析系统
臧冬松 霍菁 梁栋 孙功星
将MapReduce思想引入到高能物理数据分析中,提出一个基于Hadoop框架的高能物理数据分析系统。通过建立事例的TAG信息数据库,将需要进一步分析的事例数减少2~3个数量级,从而减轻I/O压力,提高分析作业的效率。利用基于TAG信息的事例预筛选模型以及事例分析的MapReduce模型,设计适用于ROOT框架的数据拆分、事例读取、结果合并等MapReduce类库。在北京正负电子对撞机实验上进行系统实现后,将其应用于一个8节点实验集群上进行测试,结果表明,该系统可使4×106个事例的分析时间缩短23%,当增加节点个数时,每秒钟能够并发分析的事例数与集群的节点数基本呈正比,说明事例分析集群具有良好的扩展性。
