你好,游客 登录 注册 发布搜索
背景:
阅读新闻

[PDF]Hadoop MapReduce短作业执行性能优化

[日期:2014-06-10] 来源:CNKI  作者:顾荣 严金双 杨晓亮 袁春风 黄宜华 [字体: ]

Hadoop MapReduce短作业执行性能优化

顾荣 严金双 杨晓亮 袁春风 黄宜华

Hadoop MapReduce并行计算框架被广泛应用于大规模数据并行处理.近年来,由于其能较好地处理大规模数据,Hadoop MapReduce也被越来越多地使用在查询应用中.为了能够处理大规模数据集,Hadoop的基本设计更多地强调了数据的高吞吐率.然而在处理对短作业响应性能有较高要求的查询应用时,Hadoop MapReduce并行计算框架存在明显不足.为了提升Hadoop对于短作业的执行效率,对原有的Hadoop MapReduce作出以下3点优化:1)通过优化原有的setup和cleanup任务的执行方式,成功地缩短了作业初始化环境准备和作业结束环境清理的时间;2)将首次任务分配从“拉”模式转变为“推”模式;3)将作业执行过程中JobTracker和TaskTrackers之间的控制消息通信从现有的周期性心跳机制中分离出来,采用即时传递机制.最后,采用一种典型的基于MapReduce并行化的查询应用BLAST,对优化工作进行了评估.各种不同类型BLAST作业的测试实验表明,与现有的标准Hadoop相比,优化后的Hadoop平均执行性能提升约23%.


Hadoop MapReduce短作业执行性能优化

收藏 推荐 打印 | 录入:574107552 | 阅读:
相关新闻       Hadoop MapReduce 
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款