你好,游客 登录 注册 发布搜索
背景:
阅读新闻

基于Hadoop的并行共享决策树挖掘算法研究

[日期:2013-12-25] 来源:CNKI  作者:陈湘涛 张超 韩茜 [字体: ]

基于Hadoop的并行共享决策树挖掘算法研究

陈湘涛    张超   韩茜

共享知识挖掘是指通过学习不同事物之间的共享知识,将学习到的知识应用到未知事物来加快认知未知事物.针对大数据集中串行共享知识挖掘算法效率低下的问题,结合云计算技术,提出了一种基于Hadoop的并行共享决策树挖掘算法(PSDT).该算法采用传统的属性表结构实现并行挖掘,但其I/O操作过多,影响算法性能,为此,进一步提出了一种混合并行共享决策树挖掘算法(HPSDT).该算法采用混合数据结构,在计算分裂指标阶段使用属性袁结构,在分裂阶段采用数据记录结构.数据分析表明,HPSDT算法简化了分裂过程,其I/O操作是SDT的0.34左右.实验结果表明,PSDT和HPSDT都具有良好的并行性和扩展性;HPSDT比PSDT性能更好,并且随着数据集的增大,HPSDT的优越性更加明显.


基于Hadoop的并行共享决策树挖掘算法研究

收藏 推荐 打印 | 录入:574107552 | 阅读:
相关新闻       Hadoop 
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款