
Cloudstone: Multi-Platform, Multi-Language Benchmark and
Measurement Tools for Web 2.0

Will Sobel, Shanti Subramanyam*, Akara Sucharitakul*, Jimmy Nguyen, Hubert Wong,
Arthur Klepchukov, Sheetal Patil*, Armando Fox, David Patterson

UC Berkeley and *Sun Microsystems

Abstract

Web 2.0 applications place new and different demands
on servers compared to their Web 1.0 counterparts. Simul-
taneously, the definitive arrival of pay-as-you-go “cloud
computing” and the proliferation of application develop-
ment stacks present new and different degrees of freedom in
deploying and tuning software-as-a-service. We first iden-
tify non-obvious challenges and caveats to performing “ap-
ples-to-apples” comparisons of Web 2.0 application de-
ployments. We then offer Cloudstone, a toolkit consisting of
an open-source Web 2.0 social application (Olio), a set of
automation tools for generating load and measuring its per-
formance in different deployment environments, and a rec-
ommended set of constraints for computing a metric we
believe makes more sense, dollars per user per month. By
way of example we present preliminary measurements of
both Rails and PHP versions of Cloudstone on a variety of
Amazon Elastic Compute Cloud (EC2) configurations,
discussing the challenges of comparing platforms or soft-
ware stacks and how Cloudstone can help quantify the dif-
ferences.

1. Why We Need New Workloads
Existing Web benchmarking tools (ab, httperf,

SPECWeb) and applications (RuBiS, PetStore) are becom-
ing less relevant to current practice in three ways. First,
Web 2.0 application functionality induces new characteris-
tics in workloads that servers must handle. Second, the
definitive arrival of “pay-as-you-go” cloud computing has
brought fast growth and large scale within the reach of in-
dependent developers, making the corresponding concerns
of benchmarking, stress testing and scalability more broadly
applicable. Lastly, debate continues over the performance
differences among different development stacks, but we
lack tools to investigate such questions systematically.
1.1. Web 2.0 Workloads are Different

Following Tim O’Reilly’s widely-cited article [5] , we
distinguish dominant architectures and features of “Web
1.0” applications (c.1995-2005) from those of “Web 2.0”
applications (c.2005-present), noting their effect on applica-
tion server workloads and deployment architectures.

One-to-many vs. many-to-many: the “mass customiza-
tion” of Web 1.0 presents the same content heavily custom-
ized to each user, but since different users’ activities and
profiles rarely affect each other, a natural scaling strategy
involves partitioning by user ID. In contrast, the social net-
working features of Web 2.0, in which each user’s actions
and preferences affect many other users in her network,
suggest no obvious static partitioning as a scaling strategy.

User-contributed content: Whereas Web 1.0 focused on
publishing to users, Web 2.0 users publish to each other via
blogs, photostreams, tagging (Digg, Del.icio.us, etc.), col-
laborative filtering (e.g. Amazon book reviews and recom-
mendations), etc. This changes the read/write ratio and write
patterns compared to Web 1.0 applications.

Richer user experience: The quest for improved interac-
tivity through AJAX (Asynchronous JavaScript And XML),
in which JavaScript code communicates with the server in
the background, generates extra work on the server during
what would otherwise be the Web user’s “think time”. On
the other hand, well-coded AJAX may result in less render-
ing work on the server. A benchmark should help quantify
these effects.
1.2. Cloud Computing is Different

Pay-as-you-go storage and computing, such as Amazon’s
EC2 and S3, change the economics of service deployment in
two important ways. One is the much lower cost of “instant”
incremental scalability. Another is that capacity can be
quickly un-deployed to save money; developers need neither
provision for peaks nor waste money on idle capacity during
nonpeaks. The net effect is that linear scaling and stress
testing at high load, until recently the purview of heavily-
capitalized corporations, are now part of the operational
landscape for independent developers as well. Even in
“locked down” cloud computing environments such as EC2
where the developer has little control over network topology
or hardware platform, understanding the performance bot-
tlenecks imposed by the offered infrastructure is valuable.
1.3. A Web 2.0 Application, Workload and Metrics

The Cloudstone toolkit addresses these requirements with
three components:

(1) Olio1, an open-source incubator project recently
launched by Sun and UC Berkeley, consisting of two com-
plete implementations of a social-event calendar web appli-
cation (Ruby on Rails and PHP), and a sophisticated open-
source workload generator, Faban2, that can scale to thou-
sands of simulated users and supports fine-grained time-
varying workloads. Both implementations provide the same
Web 2.0 features (user-generated metadata, social network-
ing functions, and a rich AJAX-based GUI) and adhere to
each development stack’s idioms, exposing architectural as
well as implementation-specific deployment and tuning
choices such as caching and database tuning parameters.

(2) A set of automation tools, including database popula-
tion, metric gathering, etc., for running large Olio

1 http://incubator.apache.org/projects/olio.html
2 http://faban.sunsource.net

experiments on cloud computing environments such as
Amazon Elastic Compute Cloud (EC2).

(3) A recommended methodology and set of parameters
for computing the key metric of dollars per user per month
in a deployment of the application.

Cloudstone consists of 100% open source components
connected in an architecture representative of datacenter-
based deployment, and supplied as a set of virtual machine
images for Amazon EC2 that readers are invited to down-
load immediately. We include some preliminary results of
Cloudstone measurement on Amazon EC2. It is our expecta-
tion that CloudStone can be used to systematically investi-
gate questions such as: How do different development
stacks trade single-node performance for code complexity
and programmer productivity? What is the relative perform-
ance difference between hosting a Web 2.0 application on a
large number of modest-capacity servers vs. a smaller num-
ber of heavily-provisioned manycore servers? How do two
different dynamic provisioning algorithms respond to work-
load peaks? What is the cost of deployment per user?

2. Cloudstone Overview
2.1. Goals and Non-Goals

Our goal is to capture “typical” Web 2.0 functionality in
a datacenter or cloud computing environment, and provide
for consistent evaluation of how many dollars per user per
month an installation can support under typical production
conditions. To this end we provide a realistic workload
generator, allow flexibility in deployment to support a range
of best practices for caching and tuning, and allow for test-
ing and data collection of a variety of scenarios, including
stress testing, linear scaling, “hockey stick” surges, etc.

Non-goal: arguing for any one development stack over
another. Many factors influence the choice of a development
stack, and at best CloudStone will help developers system-
atically quantify some of the effects of those choices.

Non-goal: emulating legacy applications. Our choice of
application features and development stacks reflects popular
design points for Web 2.0 application design today.

Non-goal: providing the “best” (fastest, most memory-
efficient, etc.) implementation of this particular application.
Our goal is code that exploits each platform’s strengths and
idioms as a competent developer on that platform would do.
2.2. Components and Typical Workflow

Cloudstone follows the now-canonical three-tier Web
application architecture: a stateless Web server tier, a state-
less or soft-state (caching or affinitized) application server
tier, and a persistence tier. A typical experiment consists of:

1) Choose a deployment architecture and arrange for
Cloudstone’s included scripts to deploy the components

2) Prepare a workload profile for the workload generator
3) Run the experiment, deploying the workload generator

to one or more machines distinct from those on which the
application is deployed

4) Collect the resulting data

Figure 1. The Olio “social events” application’s functionality and
implementation are representative of Web 2.0 in both implementa-
tions: Ruby on Rails and PHP.

Cloudstone provides various AMI’s (virtual machine im-
age files compatible with Amazon’s Elastic Compute
Cloud) that conveniently bundle the components to facilitate
this workflow. We describe each of the components briefly.
2.3. Application

Figure 1 shows screenshots of the Olio social-events ap-
plication. Users can browse events by date or tag, and see
embedded maps to event locations; logged-in users can
create events, tag events, attend an event, and add comments
and ratings to an event. AJAX is used to make the UI
streamlined and responsive; both implementations share
similar CSS stylesheets and identical XHTML markup,
allowing the same workload generator and data collection
tools to be used with any of them. From the user’s point of
view, all implementations behave identically. The data is
stored in a relational database according to a simple snow-
flake schema; Cloudstone uses MySQL and includes a
loader application to populate it with deterministic dummy
data.
2.4. Workload Generation

Faban is an open source3 Markov-chain, closed-loop [6] ,
session-based [3] synthetic workload generator. (See [4] for
an overview of approaches to Web load testing.) Unlike
simpler workload generators such as ab or httperf, Faban
distinguishes N discrete application workflows, each con-
sisting of a short sequence of related HTTP roundtrips to the
server to accomplish some task (“add tag”, “log in”, etc.).
An N×N matrix M gives the probability Mij that workflow j
will follow workflow i; this matrix can be derived from site-
specific estimates [1] or by clustering information in web
server logs [4] . Many parallel Faban agents on different
machines can act under the control of a central coordinator,
allowing distributed workload generation. The number of
simulated users can be changed at any time during the
course of the run according to a text file specifying a work-
load profile. Faban uses a standard inter-arrival time model
for spacing of operations that may incorporate multiple
requests.

3 http://faban.sunsource.net

2.5. Collecting and Analyzing Results
During a run, Faban records the response times of each

request made by the load generator, from the time the re-
quest is issued by Faban until the time at which the last byte
of the response is received. The request rate is measured
between the initiations of successive operations. From these
metrics, Faban calculates the mean, maximum, and 90th and
99th percentiles of response times for each operation type.
Faban also records utilization data by running external tools
such as iostat, mpstat, vmstat, netstat, etc. periodically dur-
ing a benchmark and graphs the results using fenxi. All test
data can be exported for further analysis.

Cloudstone includes automation scripts that implement
deploy, undeploy, restart and configure actions for data-
bases, web servers, application servers, and load balancers
in a deployment environment. The scripts currently work
with EC2, but are easily modified for other environments.

3. The Challenges of Web 2.0 Benchmarking
Performing “fair” comparisons of different deployments

is fraught with difficulty. A stacks comparison compares
different implementations of the same functionality on dif-
ferent software stacks (e.g. Rails vs. PHP); a challenge is
that the available tuning mechanisms are often quite differ-
ent for each platform, being matched to each platform’s
development abstractions. For example, Rails provides
built-in abstractions for caching, whereas PHP leaves it to
the developer to design and implement a caching strategy.
Providing multiple tuning options allows developers to
compare different strategies and determine how best to
implement these strategies in their applications.

A platform comparison compares the behavior of the
same software in different hardware environments, e.g. on
different server types; different hardware topologies and
virtualization complicate this comparison. To help potential
users of Cloudstone, we outline our tuning methodology and
point out caveats where the choice of platform or other
tuning can trump other effects or otherwise distort results.

Traditional three-tier applications eventually bottleneck
on the persistence tier, which is usually some kind of data-
base. Hence there are generally three degrees of freedom
involved in horizontal scaling:

(1) deploying additional web server, application server,
etc. components and balancing the relative number and
placement of these components to improve hardware utiliza-
tion, until the database becomes the bottleneck;

(2) tuning the database to improve its performance;
(3) deploying caching to reduce the load on the database

or application servers.
Our message in this paper is that Cloudstone as a frame-

work is agnostic to these choices; we have made specific
choices for our initial experiments to reflect what we under-
stand to be contemporary practice, but the Cloudstone
scripts can easily be modified to use alternatives.
3.1. Database Tuning

Database tuning is complex and we do not discuss it here,
though we distinguish two general classes of optimization:

(1) Stack-independent techniques such as adding secon-
dary indices, rewriting or combining queries, re-normalizing
tables, modifying configuration parameters, and exploiting
replication (master-slave, single writer/multiple readers,
clustering, etc.). For example, we have found that MySQL
is very sensitive to configuration: Every change in database
size and hardware configuration requires a change to the
configuration file to achieve optimal performance.

(2) Stack-specific techniques matched to each stack’s da-
tabase access model. For example, PHP requires the devel-
oper to hand-code all SQL queries, which allows more op-
timizations for experienced developers but increases the
burden on less-experienced developers (who may write
inefficient queries). In contrast, Rails and similar MVC
frameworks provide object-relational mapping layers that
insulate the developer from interacting directly with the
database, making it less likely for inexperienced developers
to do harm but also limiting some query optimizations. Even
within a framework, different versions may require changes
to database query strategy; for example, the synthesis of join
queries changed significantly from Rails version 2.0 to 2.1.

Of course, the choice of database itself has performance
implications. The two most popular choices for Web 2.0
deployments are MySQL and PostgreSQL; we use MySQL
without loss of generality, but Cloudstone is agnostic to the
type of database.
3.2. Deploying Additional Web & Application Servers

The preferred deployment topologies are different for
Rails and PHP, as the figures below illustrate. In either
scenario, whenever multiple worker processes are deployed
there is a need for a load balancer. The default mod_proxy
load balancer built into Apache is fairly simplistic and does
not allow for dynamic reconfiguration. More sophisticated
alternatives include haproxy, pound, and Nginx
(www.nginx.net), to name a few.

Figure 2. Whereas the preferred RoR deployment uses Apache process as a
load balancer and multiple Rails application servers, the preferred PHP
deployment uses many Apache+ mod_php workers.

Although we did not make use of a hardware SSL accel-
erator, such components are external to the application stack
and would affect all measurements equivalently.
3.3. Caching

The easiest way to increase database performance is to
avoid accessing it. This can be done by caching queries and
web content and restructuring queries to reduce joins or
round trips. Usually, the process of adding business-logic-
specific caching cannot be automated since it requires the
developer to specify cache policies on a per-page basis.
Furthermore, the choice of software stack may dictate cach-
ing options.

The degrees of freedom for caching are generally:
(1) What is cached? Rails provides up to three levels of

built-in caching. Caching full pages allows them to be
served directly from a Web (asset) server, completely by-
passing the application server and database, but is rarely
effective for Web 2.0 applications due to the high degree of
page customization. Caching rendered page fragments
reduces the time associated with the rendering of that por-
tion of the page, but additional techniques such as lazy load-
ing of database results are required to take the database
completely out of the loop in this case. Action caching of-
fers a middle ground, reducing database access by serving
the entire content of the page from cache while still allow-
ing filters to be run to enforce authentication and other
validations. Action and fragment caching are a natural fit for
Rails’ abstractions; in contrast, PHP does not provide built-
in abstractions for caching, leaving it to each developer.

(2) Where are cached objects stored? The most popular
choices for Web 2.0 stacks are in local RAM of each appli-
cation server, in a file, or using memcached, a distributed
RAM-based cooperative cache. Memcached has many de-
ployment options for replication to provide redundancy and
higher performance. It has no “native” object model so it
can be used to store rendered content, query results, and
user session data. Since memcached also has a concept of
object lifecycle, it is well suited for storage of data whose
validity is time-limited. At any rate, in this paper we report
results using RAM-based caching only.

4. Computing Dollars per User per Month
Given all these degrees of freedom, even defining the

general measurement of dollars per user per month is not
trivial. We therefore propose the following methodology for
computing and reporting this metric.
4.1. Benchmark Run to Compute Number of Users

We first characterize the system size as U=log10(# of user
accounts in database). As of this writing, for Facebook, U=8
(~110 million users). Results are only valid for U≥3.

The Cloudstone-supplied Faban configuration file defines
response latency targets for each operation type in the work-
load. We define two SLA levels. SLA-1 (resp. SLA-2) re-
quires 90% (resp. 99%) of the operations in any 5-minute
window to complete within their allowed response times.
Separate runs should be performed to report the maximum
number of concurrent users that can be supported at SLA-1
and SLA-2; each run must be no shorter than 5 minutes. The

CloudStone mix matrix is constructed such that at any time,
the number of concurrent logged-in users is roughly 10% of
the total number of user accounts in the database.
4.2. Dollars Per Month

Computing the dollar cost per month is installation-
dependent. Cloud computing services such as EC2 make it
relatively straightforward: all usage is charged by the hour
or by number of bytes stored or transferred, with no startup
or capital charges to depreciate. If hardware is racked and
purchased, capital costs must be considered. Therefore, the
cost per user per month must be given as three measure-
ments: based on 1 month of operation, based on 1 year, and
based on 3 years (the standard hardware-depreciation period
for tax purposes), with a detailed description of how the cost
per month was calculated. The table below summarizes the
benchmark parameters and required and optional reporting.

Table 1: CloudStone parameters & reporting
Metric CloudStone value
U (log10(#users)) Depends on system under test;

minimum U=3 (1000 users)
SLA response-time
threshold

Set per-operation in Cloud-
Stone mix matrix; varies from
1-4 seconds

SLA percentile 90 and 99 (report both)
window for measuring
SLA compliance

5 minutes

Required reporting:
1. CloudStone version and app variant (Rails or PHP)
2. Configuration file settings for database, front end, ap-

plication server, etc. if different from defaults
3. Value of U (log10(# user accounts))
4. $/user/month for 1, 12, 36 months, at SLA-1 (90%ile)
5. $/user/month for 1, 12, 36 months, at SLA-2 (99%ile)

5. Experimental Setup
As the previous section illustrates, the many deployment

options and components make exact comparisons between
frameworks difficult. We focus on two questions: (1) How
many (concurrent) users can be served for a fixed dollar
cost per month on Amazon EC2? (2) How many can be
supported without replicating the MySQL database?
5.1. Experimental Setup
Figure 4 shows the deployment template we use, with slight
differences for running the Rails vs. PHP version of Cloud-
stone. Following accepted practice, since Rails processes
run best in a dedicated single-threaded application server
rather than as a part of a full-featured web server, we run the
Rails application using a single load balancer/front end
process and several thin4 application server processes. We
initially used Apache with mod_proxy as the load balancer
but quickly switched to nginx. In contrast, the most common
PHP deployment uses the haproxy load balancer and several
Apache/mod_php processes as application servers, with
Apache dynamically deciding how many mod_php workers
to run, up to a specified maximum.

4 http://code.macournoyer.com/thin

We measure two configurations on EC2. In the first con-
figuration we limit ourselves to three EC2 instances: one for
the load generator, one for the MySQL database, and one
for the HTTP front end and application server processes.
The goal of this configuration is to answer the question:
How many (concurrent) users can be supported for a fixed
dollar amount? In the second configuration we add up to
two more EC2 instances hosting additional application
server processes. The goal of this configuration is to answer
the question: How many users can be supported with a sin-
gle nonreplicated MySQL instance, even if this means add-
ing more application servers?, that is, “balancing the pipe-
line” to keep a single MySQL busy.

We make use of two instance types available on EC2.
Both are virtualized 64-bit x86 machines with the same
(according to Amazon) I/O performance and 1.5TB of virtu-
alized storage, but the M1.XL type has 15GB RAM and 8
“compute units” of CPU5 (4 virtual cores x 2 units each)
whereas the C1.XL type has 7GB RAM and 20 compute
units (8 cores x 2.5 units each). This distinction will prove
interesting, especially since the two instance types cost the
same to use, namely $0.80 per instance-hour.

Prior to deployment, we used sysbench on MySQL and
found that it achieves better performance on an C1.XL in-
stance than an M1.XL instance (suggesting it is CPU-
bound), topping out at 800 queries/second for a read-only
workload and about 600 queries/second for a read-write
workload. Therefore in all experiments we ran MySQL on
its own C1.XL instance, the Faban load generator on a sepa-
rate C1.XL instance, and several application server proc-
esses distributed over one to three additional C1.XL in-
stances. Table 2 summarizes the measured configurations,
including the two experiments where more than 1 instance
was used to host application servers.

App Type Comments (see text)
1 RoR M1.XL mod_proxy (load balanc-

ing) bottleneck
2 RoR+caching M1.XL
3 RoR C1.XL
4 RoR+caching C1.XL
5 RoR C1.XL 44 thins, 3 servers
6 RoR+caching C1.XL 28 thins, 2 servers
7 PHP+caching C1.XL

Table 2. Summary of configurations measured.

5 According to Amazon, 1 “compute unit” is equivalent to a 1.0–

1.2 GHz Opteron or Xeon core in 2007.

Figure 5. Cost per user per month for configurations of Table 2, at
90th and 99th percentile SLA. Numbers in shaded & unshaded
boxes give number of simulated concurrent users at 90th and 99th
percentile respectively.

5.2. Results and Observations
In this paper we report a subset of our results; we have

collected and are publishing data for many more scenarios
[7] . Figure 5 summarizes our answer to the two questions
How many users can be supported on a fixed dollar budget?
and How many users can be supported using a single non-
replicated MySQL instance? To produce each data point, we
manually perform various runs to “zero in” on the largest
number of concurrent users that will still meet the 90th and
99th percentile SLA’s for each configuration in Table 2. (We
are working on simple scripts to automate this binary search
process.) We then compute the monthly cost of the configu-
ration by adding up the number of instances used (in all
cases, 1 instance for the database and 1 for the application
servers, except in scenarios 5 and 6 where we used respec-
tively 2 and 3 instances for application servers) and assum-
ing $0.80 per hour for 24x7 usage over a 30-day month. To
simplify reporting we are not including a bandwidth cost
estimate, but since outbound bandwidth varies directly with
number of concurrent users, it will affect all measurements
by a constant-factor multiple. Cloudstone requires reporting
the monthly cost per user for 1, 12, and 36 months, but for
EC2 these would all be the same due to its strictly pay-as-
you-go pricing. Thus, for example, configuration #4 allows
us to support 500 users for $2.30 per user per month if we
wish to meet the 90th percentile SLA, or 250 users at $4.61
per user per month at the stricter 99th percentile SLA.6

In experiments 1–4 (all using the Rails version of Cloud-
stone), we limit ourselves to a single EC2 instance for the
application servers to ask how many users can be supported
for $1.60 per hour (one instance hosting appservers and one
hosting MySQL, excluding bandwidth charges). In the first
experiment, we quickly ran into an unexpected bottleneck
due to the mod_proxy load balancer, and switched to nginx
thereafter. But comparing experiments 2 and 4 is instructive,
since the only difference is the choice of an M1.XL vs. a
C1.XL instance (the two cost the same). In scenario 4 we

6 We ran out of time to calculate the 99th percentile values for

experiments 5 and 6, as we were using an older version of Faban
that reported only the 90th percentile.

Figure 3. Experimental deployment setup on EC2; dotted lines are
EC2 instance boundaries.

support twice as many users for the same price, confirming
the anecdotal evidence that Rails is CPU-limited rather than
memory-limited. A tentative conclusion might be: other
things being equal, Rails deployment will benefit from
spending money for more CPU rather than more RAM.

Enabling caching using Rails’ abstractions for page, ac-
tion and fragment-level caching (scenarios 2, 4, 6 compared
to 1, 3, 5) improves throughput as expected, but more inter-
esting is that we can support twice as many users at the 90th
percentile SLA compared to the stringent (but more repre-
sentative for larger sites) 99th percentile SLA, clearly indi-
cating the “cost of an extra 9” of performance.

Lastly, in order to measure how many users can be sup-
ported until the database saturates, in scenarios 5 and 6 we
add additional servers hosting more Rails application serv-
ers (thins). As expected, until the database saturates, adding
more appservers simply amortizes the cost of the database
more effectively, so the cost per user decreases further in
these scenarios. In general we experience diminishing re-
turns on throughput with more than two thin servers per
(virtual) core. (With PHP, we did not need to add additional
application server machines to saturate the database.)

While “apples to apples” comparisons are impossible due
to the number of variables involved and the comparison of
two independent implementations of the same application, a
tentative summary of Scenario 7 might be: “Rails is less
hardware-efficient than PHP by a factor of 2 to 3.” While
imprecise, this suggests a quantitative response to the anec-
dotal skepticism that “Rails doesn’t scale.”
5.3. Discussion

Somewhat to our surprise, the process of running these
benchmarks uncovered various interesting behaviors. We
note that while some of these are consistent with anecdotes
from colleagues, we now have a way to reproducibly quan-
tify the effects and capture (in an Amazon virtual machine
image) the specific configuration that illustrates each effect.
• Apache+mod_proxy was causing a premature bottleneck at
only 135 concurrent users. Switching to the high-
performance nginx load balancer fixed this.
• Saturating a single MySQL on an C1.XL instance required
between two and three application instances.
• Rails is CPU-bound: f we can serve more users by hosting
the thin servers on an C1.XL instance rather than an identi-
cally-priced M1.XL instance, whereas the Apache/PHP
version is memory bound and does not exhibit this behavior.
• Turning off logging resulted in an approximately 20%
throughput increase. We speculate that the I/O overheads
associated with virtualization are responsible, but we need
to investigate further to understand this effect.
• At 1,000 concurrent users, we approach the capacity limit
of gigabit Ethernet. Note that this corresponds to the non-
trivial volume of approximately 17 million hits per day.

6. Conclusions and Future Work
We have identified many degrees of freedom in deploy-

ing Web 2.0 applications—caching, hardware configuration,
tuning, and options we haven’t even considered such as
hardware SSL acceleration and alternative interpreters
(JRuby, IronRuby, etc.) Given all these variables and the

controversy about which development stack to use, conven-
tional “apples to apples” benchmarks may not be the right
goal for cloud computing benchmarks if Web applications
are the workload of interest.

We have contributed a “canonical” application, load gen-
erator and instrumentation, and a proposal for measuring
dollars per user per month under representative constraints,
in order to capture salient aspects of the performance of a
particular deployment of Web 2.0 applications in cloud
computing environments. We have already learned a great
deal about many open-source software components and we
will explore dynamic workloads (“hockey stick” growth,
flash crowds, etc.) in future work. We hope others will find
these tools as useful and illuminating as we have, and will
consider adopting our methodology and metrics of merit for
evaluating cloud computing deployment options.

7. Download & Acknowledgments
We will be making the Amazon machine images used for

these experiments available at http://radlab.cs.berkeley.edu/
wiki/Projects/Cloudstone. We hope others join the Olio
incubator project and create implementations using other
technology stacks.

Thanks to Peter Bodík for help with Faban modifications
and Rean Griffith for discussion of benchmark metrics.

This research is supported in part by gifts from Sun Mi-
crosystems, Google, Microsoft, Cisco Systems, Hewlett-
Packard, IBM, Network Appliance, Oracle, Siemens AB,
and VMWare, and matching funds from the State of Cali-
fornia MICRO program (grants 06-152, 07-010, 06-148, 07-
012, 06-146, 07-009, 06-147, 07-013, 06-149, 06-150, and
07-008) and the UC Discovery Grant (COM07-10240).

References
[1] George Candea et al., Microreboot—A Technique for Cheap

Recovery. Proc. 6th OSDI, San Francisco, CA, Dec. 2004
[2] Roy T. Fielding and Richard N. Taylor, Principled Design of

the Modern Web Architecture. ACM Trans. on Internet Tech-
nology 2(2): 115–150

[3] D. Krishnamurthy et al., A Synthetic Workload Generation
Technique for Stress Testing Session-Based Systems, IEEE
Trans. on Software Eng. 32(11), Nov. 2006

[4] Daniel Menascé. Load Testing of Web Sites. IEEE Internet
Computing 6(4), July/August 2002

[5] Tim O’Reilly. What is Web 2.0? http://www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

[6] Bianca Schroeder, Adam Wierman, Mor Harchol-Balter.
Open vs. Closed: A Cautionary Tale. Proc. NSDI 2006.

[7] W. Sobel et al. Scaling Ruby on Rails in a Cloud Computing
Environment. UC Berkeley Technical Report EECS-2008-130
(in preparation).

[8] A. Sucharitakul and S. Subramanyam. Cadillac or Nascar? A
Non-Religious Investigation of Modern Web Technologies.
Proc. O’Reilly Velocity’08, http://en.oreilly.com/velocity2008

