The Eucalyptus Open-source Cloud-computing System

Daniel Nurmi, Rich Wolski, Chris Grzegorczyk
Graziano Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov

Computer Science Department
University of California, Santa Barbara
Santa Barbara, California 93106

Abstract

Cloud computing systems fundamentally provide ac-
cess to large amounts of data and computational resources
through a variety of interfaces. Many extant systems have
in common the notion that resources can be acquired and
released on-demand and that the user interface be kept
fairly simple. In addition, resources provided by cloud
computing systems hide a great deal of information from
the user through virtualization (physical location of the
resource, precise architectural details of the compute re-
sources). These types of systems offer a new program-
ming target for scalable application developers and have
gained popularity over the past few years. However, most
cloud computing systems in operation today are propri-
etary, rely upon infrastructure that is invisible to the re-
search community, or are not explicitly designed to be in-
strumented and modified by systems researchers interested
in cloud computing systems.

In this work, we present EUCALYPTUS — an open-
source software framework for cloud computing that im-
plements what is commonly referred to as Infrastructure
as a Service (laaS); systems that give users the ability to
run and control entire virtual machine instances deployed
across a variety physical resources. We outline the basic
principles of the EUCALYPTUS design, and discuss archi-
tectural trade-offs that we have made in order to allow
Eucalyptus to be portable, modular and simple to use on
infrastructure commonly found within academic settings.

1 Introduction

There are many ways in which computational power
and data storage facilities are provided to users, rang-
ing from a user accessing a single laptop to the alloca-
tion of thousands of compute nodes distributed around the
world. Users generally locate resources based on a va-
riety of characteristics, including the hardware architec-
ture, memory and storage capacity, network connectivity
and, occasionally, geographic location. Usually this re-

source location process involves a mix of resource avail-
ability, application performance profiling, software ser-
vice requirements, and administrative connections. While
great strides have been made in the HPC and Grid Com-
puting communities [10, 4] toward the creation of resource
provisioning standards [9, 11, 17, 19], this process re-
mains somewhat cumbersome for a user with complex re-
source requirements.

For example, a user that requires a large number of
computational resources might have to contact several
different resource providers in order to satisfy her re-
quirements. When the pool of resources is finally deliv-
ered, it is often heterogeneous, making the task of per-
formance profiling and efficient use of the resources diffi-
cult. While some users have the expertise required to ex-
ploit resource heterogeneity, many prefer an environment
where resource hardware, software stacks, and program-
ming environments are uniform. Such uniformity makes
the task of large-scale application development and de-
ployment more accessible.

Recently, a number of systems have arisen that at-
tempt to convert what is essentially a manual large-scale
resource provisioning and programming problem into a
more abstract notion commonly referred to as elastic, util-
ity, or cloud computing (we use the term ‘“cloud com-
puting” to refer to these systems in the remainder of this
work). As the number and scale of cloud-computing sys-
tems continues to grow, significant study is required to de-
termine directions we can pursue toward the goal of mak-
ing future cloud computing platforms successful. Cur-
rently, most existing cloud-computing offerings are either
proprietary or depend on software that is not amenable
to experimentation or instrumentation. Researchers in-
terested in pursuing cloud-computing infrastructure ques-
tions have few tools with which to work.

The lack of research tools is unfortunate given that
even the most fundamental questions are still unanswered:
What is the right distributed architecture for a cloud-
computing system? What resource characteristics must
VM instance schedulers consider to make most efficient

use of the resources? How do we construct VM instance
networks that are flexible, well-performing, and secure?
In addition, questions regarding the benefits of cloud com-
puting remain difficult to address. Which application do-
mains can benefit most from cloud computing systems and
what interfaces are appropriate? What types of service
level agreements should cloud computing provide? How
can cloud-computing systems be merged with more com-
mon resource provisioning systems already deployed?

Cloud computing systems provide a wide variety
of interfaces and abstractions ranging from the ability
to dynamically provision entire virtual machines (i.e.,
Infrastructure-as-a-Service systems such as Amazon EC2
and others [6, 7, 14, 5, 16]) to flexible access to hosted
software services (i.e. Software-as-a-Service systems
such as salesforce.com and others [18, 12, 13, 15]). All,
however, share the notion that delivered resources should
be well defined, provide reasonably deterministic perfor-
mance, and can be allocated and de-allocated on demand.
We have focused our efforts on the “lowest” layer of cloud
computing systems (IaaS) because here we can provide
a solid foundation on top of which language-, service-,
and application-level cloud-computing systems can be ex-
plored and developed.

In this work, we present EUCALYPTUS: an open-source
cloud-computing framework that uses computational and
storage infrastructure commonly available to academic re-
search groups to provide a platform that is modular and
open to experimental instrumentation and study. With EU-
CALYPTUS, we intend to address open questions in cloud
computing while providing a common open-source frame-
work around which we hope a development community
will arise. EUCALYPTUS is composed of several compo-
nents that interact with one another through well-defined
interfaces, inviting researchers to replace our implemen-
tations with their own or to modify existing modules.
Here, we address several crucial cloud computing ques-
tions, including VM instance scheduling, cloud comput-
ing administrative interfaces, construction of virtual net-
works, definition and execution of service level agree-
ments (cloud/user and cloud/cloud), and cloud computing
user interfaces. In this work, we will discuss each of these
topics in more detail and provide a full description of our
own initial implementations of solutions within the EU-
CALYPTUS software framework.

2 EUCALYPTUS Design

The architecture of the EUCALYPTUS system is simple,
flexible and modular with a hierarchical design reflecting
common resource environments found in many academic
settings. In essence, the system allows users to start, con-
trol, access, and terminate entire virtual machines using an
emulation of Amazon EC2’s SOAP and Query interfaces.
That is, users of EUCALYPTUS interact with the system
using the exact same tools and interfaces that they use to
interact with Amazon EC2. Currently, we support VMs

Public
network

Private
network

Private
network

AN /

Cluster B

Cluster A

Figure 1. EUCALYPTUS employs a hierarchical de-
sign to reflect underlying resource topologies.

that run atop the Xen [2] hypervisor, but plan to add sup-
port for KVM/QEMU [3], VMware [21], and others in the
near future.

We have chosen to implement each high-level system
component as a stand-alone Web service. This has the fol-
lowing benefits: First, each Web service exposes a well-
defined language-agnostic API in the form of a WSDL
document containing both operations that the service can
perform and input/output data structures. Second, we
can leverage existing Web-service features such as WS-
Security policies for secure communication between com-
ponents. There are three high-level components, each with
its own Web-service interface, that comprise a EUCALYP-
TUS installation:

e Instance Manager controls the execution, inspec-
tion, and terminating of VM instances on the host
where it runs.

e Group Manager gathers information about and
schedules VM execution on specific instance man-
agers, as well as manages virtual instance network.

e Cloud Manager is the entry-point into the cloud for
users and administrators. It queries node managers
for information about resources, makes high-level
scheduling decisions, and implements them by mak-
ing requests to group managers.

The relationships and deployment locations of each
component within a typical small cluster setting are shown
in Figure 1.

Instance Manager

An Instance Manager (IM) executes on every node that
is designated for hosting VM instances. An IM queries
and controls the system software on its node (i.e., the

Physical Resource

VM Instance

Public Interface Private Interface

Public Bridge Private Bridge

To Public
Ethernet

From
Remote [—
VDE Switch

To Remote
VDE Switch

Physical Interface VDE Switch

VDE Cable

Figure 2. Each instance is assigned a public inter-
face connected to the physical Ethernet, and a pri-
vate interface connected to a VDE virtual Ethernet.

host operating system and the hypervisor) in response to
queries and control requests from its Group Manager.

An IM makes queries to discover the node’s physical
resources — the number of cores, the size of memory, the
available disk space — as well as to learn about the state of
VM instances on the node (although an IM keeps track of
the instances that it controls, instances may be started and
stopped through mechanisms beyond IM’s control). The
information thus collected is propagated up to the Group
Manager in responses to describeResource and describe-
Instances requests.

Group Managers control VM instances on a node by
making runlnstance and terminatelnstance requests to the
node’s IM. Upon verifying the authorization — e.g., only
the owner of an instance or an administrator is allowed to
terminate it — and after confirming resource availability,
the IM executes the request with the assistance of the hy-
pervisor. To start an instance, the IM makes a node-local
copy of the instance image files (the kernel, the root file
system, and the ramdisk image), either from a remote im-
age repository or from the local cache, creates a new end-
point in the virtual network overlay, and instructs the hy-
pervisor to boot the instance. To stop an instance, the IM
instructs the hypervisor to terminate the VM, tears down
the virtual network endpoint, and cleans up the files as-
sociated with the instance (the root file system is not pre-
served after the instance terminates).

Group Manager

The Group Manager (GM) generally executes on a
cluster front-end machine, or any machine that has net-
work connectivity to both the nodes running IMs and to
the machine running the Cloud Manager (CM). Many
of the GM’s operations are similar to the IM’s opera-

tions but are generally plural instead of singular (e.g.
runilnstances, describelnstances, terminatelnstances, de-
scribeResources).

GM has three primary functions: schedule incom-
ing instance run requests to specific IMs, control the in-
stance virtual network overlay, and gather/report informa-
tion about a set of IMs. When a GM receives a set of in-
stances to run, it contacts each IM component through its
describeResource operation and sends the runInstances re-
quest to the first IM that has enough free resources to host
the instance. When a GM receives a describeResources
request, it also receives a list of resource characteristics
(cores, memory, and disk) describing the resource require-
ments needed by an instance (termed a VM “type”). With
this information, the GM calculates how many simulta-
neous instances of the specific “type” can execute on its
collection of IMs and reports that number back to the CM.

Finally, the GM is responsible for setting up and con-
trolling the instance virtual network over which all VM
instances within a user’s set of instances may communi-
cate, even when those instances may be running on phys-
ical machines distributed over wide areas and shielded by
firewalls. To implement such a network overlay, the GM
uses software from the Virtual Distributed Ethernet (VDE)
project [20]. This software implements the Ethernet proto-
col in software, providing virtual Ethernet “switches” and
“cables” to be run as user-space processes. Each compo-
nent (IM, GM, CM) in EUCALYPTUS runs a single VDE
switch, and VDE cables (encrypted UDP connections) are
established between as many switches as possible. As
long as there is at least one cable to each switch, the VDE
network provides a fully connected Ethernet network to
which instance’s private network interfaces are attached.

Once the GM has set up the virtual Ethernet overlay,
each instance is given both a “public” and “private” inter-
face, which are connected via software Ethernet bridges to
the local Ethernet and VDE overlay, respectively. In Fig-
ure 2, we show how each instance is logically connected
to both types of network. This configuration allows in-
stances within a cluster to communicate over the “fast”
local network, and also to use the empirically slower vir-
tual network to communicate with instances physically re-
siding in other clusters. To the owner of the instances, the
overlay provides the appearance of a flat subnet to which
all instances are connected.

Cloud Manager

The underlying resources that comprise a EUCALYP-
TUS cloud are exposed to users, and managed by, the
Cloud Manager (CM). The CM, like the system overall,
is a three-tiered design as depicted in Figure 3. The
tiers are distinct in their roles and concomitant data
statefulness/consistency requirements:

I

WS 1
Request /|
I

Data
Groups |<~

KeyPairs

Networks

Www
Request

Figure 3. Overview of Cloud Manager services.
Dark lines indicate the flow of user requests while
light lines correspond to inter-service system mes-
sages.

e Interface Services present user-visible interfaces,
handling authentication & protocol translation, and
expose system management tools.

e Data Services govern persistent user and system data.

® Resource Services arbitrate allocation and monitor-
ing of resources and active VM allocations.

Our implementation supports extension and modifica-
tion at granularities ranging from complete service re-
placement to fine-grained tuning (e.g., of user interfaces or
allocation policy) through well-defined message and lan-
guage interfaces, respectively. System-enforced separa-
tion between interface and internal message protocol insu-
lates service implementations from user protocol details.
Similarly, configurable service-ensemble organization de-
couples individual service implementations from runtime
coordination dependencies.

The Interface’s WS service advertises a single multi-
protocol endpoint for authenticating and consuming user
requests while also translating the request to an inter-
nal protocol. Users can make requests using either the
EC2 SOAP or EC2 “Query” protocols [1] (which, addi-
tionally, require incompatible authentication mechanisms:
X509 and HMAC signatures, respectively). This duality
has been achieved through the introduction and utilization
of pluggable request handling interfaces in the supporting
Web services stack software. The key function of the In-
terface service is the mapping of requests from these dis-
parate protocols to an independent system-internal proto-
col. Consequently, internal services are unconcerned with
details of the outward-facing interfaces utilized by users
while benefitting from enforcement of message validation
requirements.

In addition to the programmatic interfaces (SOAP and
“Query”), the Interface tier also offers a Web interface for
cloud users and administrators. Using a Web browser,
users can sign up for cloud access, download the cryp-
tographic credentials needed for the programmatic inter-
face, and query the system, e.g., about available disk im-
ages. The administrators can, additionally, manage user
accounts: approve, disable, and delete them. Currently,
images can be added to the system by the administrator
only with a command-line tool, but we expect the Web in-
terface to support complete administrative functionality in
the future.

The middle tier of Data Services handle the creation,
modification, interrogation, and storage of stateful system
and user data. Users can query these services to discover
available resource information (images and clusters) and
manipulate abstract parameters (keypairs, security groups,
and network definitions) applicable to virtual machine and
network allocations. Conversely, the VM service resolves
references to these resources when realizing user requests.

The Resource services process user virtual machine
control requests and interact with the GMs to effect the
allocation and deallocation of resources. A simple rep-
resentation of the system’s physical resource state (PRS)
is maintained through communication with the GMs and
used in evaluating the realizability of user requests (vis
a vis service-level agreements, or SLAs). VM control re-
quests are handled asynchronously with respect to the user
and, therefore, transactions delimit changes to the PRS.
For example, VM creation consists of reservation of the
resources in the PRS, downstream request for VM cre-
ation, followed by commitment of the resources in the PRS
on success, or rollback in case of errors.

PRS information is then exploited by an event-based
SLA scheme to evaluate the satisfiability of user requests
and enforce system policy. Application of an SLA is trig-
gered by a corresponding event (e.g., VM allocation re-
quest, expiry of a timer) and can evaluate and modify the
request (e.g., reject the request if it is unsatisfiable) or en-
act changes to the system state (e.g., time-limited alloca-
tions). While the system’s representation in the PRS may
not always reflect the actual resources, notably, the likeli-
hood and nature of the inaccuracies can be quantified and
considered when formulating and applying SLAs.

A concrete example from our implementation allows
users to control the cluster to be used for the VM al-
locations by specifying the “zone” (as termed by Ama-
zon). Further, we have extended the notion of zone to
meta-zones which advertise abstract allocation policies.
For example, the “any” meta-zone will allocate the user-
specified number of VMs to the emptiest cluster, but, in
the face of resource shortages, overflow the allocation to
multiple clusters.

3 Discussion

The EUCALYPTUS system is built to allow administra-
tors and researchers the ability to deploy an infrastruc-
ture for user-controlled virtual machine creation and con-
trol atop existing resources. Its hierarchical design targets
resource architectures commonly found within academic
and laboratory settings, including but not limited to small-
and medium-sized Linux clusters, workstation pools, and
server farms. We use software that provides a virtual Eth-
ernet overlay to connect VM instances that execute in iso-
lated networks, providing users a view of the network that
is simple and flat. The system is highly modular, with each
module represented by a well-defined API, enabling re-
searchers to replace components for experimentation with
new cloud-computing solutions. Finally, the system ex-
poses its feature set through a common user interface cur-
rently defined by Amazon EC2. This allows users who
are familiar with EC2 to transition seamlessly to a EUCA-
LYPTUS installation by, in most cases, a simple addition
of a command-line argument or environment variable, in-
structing the client application where to send its messages.

In sum, this work aims to illustrate the fact that the
EUCALYPTUS system has filled an important niche in
the cloud-computing design space by providing a system
that is easy to deploy atop existing resources, that lends
itself to experimentation by being modular and open-
source, and that provides powerful features out-of-the-box
through an interface compatible with Amazon EC2.

4 Conclusion

In this work, we present EUCALYPTUS: an open-source
implementation of an IaaS system. Presently, we and our
users have successfully deployed the complete system on
resources ranging from a single laptop (EC2 on a laptop)
to small Linux clusters (48 to 64 nodes). The system is
being used to experiment with HPC and cloud comput-
ing by trying to combine cloud computing systems like
EUCALYPTUS and EC2 with the Teragrid, as a platform
to compare cloud computing systems’ performance, and
by many users who are interested in experimenting with a
cloud computing system on their own resources.

In addition, we made have a EUCALYPTUS installation
available to all who wish to try out the system without in-
stalling any software [8]. Our experience so far has been
extremely positive, leading us to the conclusion that EU-
CALYPTUS is helping to provide the research community
with a much needed, open-source software framework
around which a user-base of cloud-computing researchers
can be developed.

References

[1] Amazon Elastic Compute Cloud (Amazon EC2). http:
//aws.amazon.com/ec2/.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and

3

—

4

—

[5

—

(6]
(7]

[8

—_—

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]
(18]
(19]
(20]

[21]

the art of virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems princi-
ples, pages 164—177, New York, NY, USA, 2003. ACM.
F. Bellard. QEMU, a Fast and Portable Dynamic Transla-
tor. Proceedings of the USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41-46, 2005.

F. Berman, G. Fox, and T. Hey. Grid Computing: Making
the Global Infrastructure a Reality. Wiley and Sons, 2003.
J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle. Dy-
namic virtual clusters in a grid site manager. High Per-
formance Distributed Computing, 2003. Proceedings. 12th
IEEE International Symposium on, pages 90-100, 2003.
Amazon elastic compute cloud - http://aws.
amazon.com/ec2/.

Enomalism elastic computing infrastructure. http://
www.enomaly.com.
Eucalyptus Public Cloud (EPC). http:

//eucalyptus.cs.ucsb.edu/wiki/
EucalyptusPublicCloud/.

I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Supercom-
puter Applications, 1997.

I. Foster and C. Kesselman, editors. The Grid — Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
1998.

D. Gannon. Programming the grid: Distributed software
components, 2002.

D. Greschler and T. Mangan. Networking lessons in deliv-
ering ‘software as a service’: part i. Int. J. Netw. Manag.,
12(5):317-321, 2002.

D. Greschler and T. Mangan. Networking lessons in deliv-
ering ’software as a service’: part ii. Int. J. Netw. Manag.,
12(6):339-345, 2002.

K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of
life in the grid. Sci. Program., 13(4):265-275, 2005.

P. Laplante, J. Zhang, and J. Voas. What’s in a name?
distinguishing between saas and soa. [T Professional,
10(3):46-50, May-June 2008.

M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker.
Usher: An Extensible Framework for Managing Clusters
of Virtual Machines. In Proceedings of the 21st Large
Installation System Administration Conference (LISA),
November 2007.

NSF TeraGrid Project.
org/.

Salesforce Customer Relationships Management (CRM)
system. http://www.salesforce.com/.

T. Tannenbaum and M. Litzkow. The condor distributed
processing system. Dr. Dobbs Journal, February 1995.
Virtual distributed ethernet (vde) home page — http://
vde.sourceforge.net/.

Vmware home page —http://www.vmware.com.

http://www.teragrid.

