Cloud Computing for parallel Scientific HPC Applications:
Feasibility of running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2.

[Extended Abstract] *

Constantinos Evangelinos and Chris N. Hill

Department of Earth, Atmospheric and Planetary Sciences, MIT
77 Massachusetts Ave.
Cambridge, MA 02139, USA

cel07@mit.edu and cnh@mit.edu

Abstract

In this article we describe the application of HPC standard
benchmark tests to Amazon’s EC2 cloud computing system,
in order to explore the utility of EC2 for modest HPC style
applications. Based on these benchmarks we find that the
EC2 cloud system is emerging as a credible solution for
supporting responsive on-demand, small sized, HPC appli-
cations. We illustrate this point with a demonstration of a
low-order coupled atmosphere-ocean simulation running in
parallel on an EC2 system. This demonstration highlights
one significant way in which cloud computing could impact
traditional HPC computing paradigms that, together with re-
lated ease-of-use technologies (described only briefly in this
paper), could shift the manner in which many HPC systems
are deployed.

Categories and Subject Descriptors D.2.12 [Software];
1.2 [Physical Sciences and Engineering]: Earth and atmo-
spheric sciences

General Terms

Keywords

1. Introduction

Traditional parallel scientific high-performance computing
(HPC) is dominated by batch processing oriented queue
based systems. This operating model has achieved much, but

* Paper presented at the CCA-08 in Chicago.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CCA-08 October 22-23, 2008, Chicago, IL

Copyright © 2008 ACM ... $5.00

the model can also be a significant impediment to progress.
In particular a queue based batch paradigm makes on-
demand, responsive and highly customized computational
science research hard to undertake. On-demand cloud com-
puting appears to offer an attractive new dimension to HPC,
in which virtualized resources can be sequestered, in a form
customized to target a specific scenario, at the time and in
the manner they are desired. We believe this concept lends
itself to more interactive responsive computational science.
In this article, in order to better understand the suitability of
current cloud computing implementations for HPC, we per-
form traditional HPC benchmarks on Amazon’s EC2 cloud
system. Encouraged by the results we then develop a demon-
stration scenario, running an example coupled atmosphere-
ocean model. This parallel scientific simulation scenario il-
lustrates one way in which we envisage cloud computing
could begin to have an impact on parallel scientific HPC
applications in the near future.

The structure of this article is as follows: in section 2 we
briefly discuss the Amazon EC2 infrastructure and the op-
portunities it offers to a computational scientist. In 2.1 we
discuss and benchmark relevant cloud computing resources
offered in EC2. In section 3 we discuss the network perfor-
mance, under the available MPI middleware, that one can
achieve on EC2, identifying certain caveats and problems.
In section 4 we describe an actual MPMD climate applica-
tion we ported and run on EC2. Finally, in 5, we conclude
with our findings and future plans.

2. Amazon Web Services: Elastic Compute
Cloud

In 2006 Amazon announced its Simple Storage Service (S3)
its Elastic Compute Cloud (EC2). S3 and EC2 together of-
fer a cloud compute and storage resource that provides the
possibility of computing on virtual parallel clusters gener-
ated and destroyed on demand. EC2 is based on Linux and

Xen (3) and various O/S images, Amazon Machine Images
(AMIs), can be supported.

2.1 EC2 Instances

Currently Amazon EC2 offers five “hardware” instance
types with different characteristics (cpu power, memory,
disk and addressability) and different pricing. Amazon pro-
vides a basic measure of an EC2 Compute Unit (1) for com-
pute power: “One EC2 Compute Unit provides the equiva-
lent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor.” These instance types have been classified
by Amazon as (i) a set of three standard instances called
ml.small, mi.large and ml.xlarge (ii) pair of high_cpu in-
stances called cl.medium and cl.xlarge.

We instantiated all five types and looked at the actual
hardware that was provided. It is apparent from the type of
cpus encountered that all Amazon EC2 systems we were as-
signed were dual socket multicore cpus. In the case of the
standard instance type, a “half of a core” behavior is en-
forced by allowing cpu utilization of the single processor
virtual machine to be at most 50%, a limitation which sys-
tem utilities such as “top” easily show. For benchmarking
one can, therefore, only meaningfully speak of wallclock
and not of cpu time on these instances, even in the case of
serial codes. Ensuring that no daemons or other processes
are contending for cpu time is, therefore, critical for all mea-
surements to be of any use. For cpu intensive applications
that spend most of their time with a full pipeline this 50%
utilization limitation means that one instance is essentially
equivalent to a downrated 1.3 GHz Opteron processor (hence
the definition of an EC2 Compute Unit). The same cannot
necessarily be said for memory bandwidth or memory la-
tency (important quantities for many HPC applications). By
virtue of running in a virtual machine environment, we also
cannot know at any given moment whether the other cores
in our actual physical system (but not in our O/S image) are
being used by ourselves or another user. Such co-habitation
of the physical system leads to contention for the processor
socket bandwidth (for the standard instance type), and the
main memory bandwidth (for the medium instance types).
The only exceptions to this rule are the xlarge instances that
essentially run a single Xen domU virtual machine on top
of the base Xen domO one for the whole two socket node.
The high-cpu instance types employ quad core core proces-
sors: while these Core2 architecture based processors are
very fast, their effective memory bandwidth is further re-
duced as 4 processor cores share the same socket pins to the
northbridge path to main memory (which is in turn shared
with the other socket’s four cores).

Within each of the families of instances, pricing is pro-
portional to the number of EC2 Compute Units but compute
power wise (based on Amazon’s figures) the 32-bit High-
CPU instance appears to be more cost-effective. For our
work we opted to initially concentrate our tests on the 32-

System 1 thread | N threads | per core B/W
m1.small 5.4GB/s | n/a 5.4GB/s
cl.medium 3.6GB/s | 5.3GB/s 2.6GB/s
Opteron 1.4 GHz | 2.8GB/s | 5.6GB/s | 2.8G/s

Table 1. STREAM Triad bandwidth (B/W) per core on
Amazon EC2

System Class A | Class W | EP (A) | EP (W)
m1l.small 132 149 6.66 6.73
cl.medium | 312 357 15.59 15.04
ratio 2.36 2.40 2.34 2.23

Table 2. Geometric means of serial NPB3.3 (excluding EP)
and EP results. Units are in Mop/s or Million Random Num-
bers Generated per second

bit images only that are the cheapest to use (at $0.1 and $0.2
per cpu hour respectively).

2.2 Test with standard HPC benchmarks

We set out to use some basic benchmarks of performance po-
tential for a general class of scientific applications. Memory
bandwidth was tested using the STREAM benchmark (21)
employing the of breed 32-bit executables available for each
processor type. The results shown in Table 2.2 show surpris-
ingly high bandwidth for the standard instance type (signifi-
cantly better than an actual first generation 1.4GHz Opteron
system - thanks to using DDR2 memory). The High-CPU
medium instance delivers bandwidth similar to what one
would expect out of such an architecture but better than what
one would expect from two cores sharing the same socket’s
pins to main memory. This leads us to hypothesize that in
fact the hardware mapping of the virtual to physical proces-
sors picks 2 cores from different sockets for this type of in-
stance.

To test computational performance on a wide set of model
applications and kernels we employed the serial version of
the NAS Parallel Benchmarks (NPB) (2) (v. 3.3). We used
both the workstation class (W) and the smallest of the par-
allel classes (A). (More than 10 years since it was defined,
class A now fits very comfortably inside any of our instances
or available workstation systems). To level the playing field
we compiled everything with the system compiler and opti-
mization flags with a target of the lowest common denomi-
nator (the Opteron in the standard instance). We see in Table
2.2 that the geometric mean of (BT, CG, FT, IS, LU, MG,
SP, UA - we excluded DC) as well as the value of the EP
tested are between 2.2 and 2.4 times faster on the High-CPU
instances. This is less than half of Amazon’s EC2 relative
compute unit rating for this machine, but still appears to be
worth the 2x price.

to /tmp over NFS
System Write | Read Write | Read
ml.small 167.59 | 1626.20 | 40.36 | 72.73
cl.medium | 283.52 | 1882.17 | 42.10 | 62.79

using both cores, separate file targets, total performance
cl.medium | 264.44 \ 2399.00 \ 41.27 \ 63.38

Table 3. IOR read and write bandwidth (128KB requests,
IMB blocksize, 100 segments) to local disk and to a remote
NFS drive. Units are in M B/s = 10° Bytes/s.

to /tmp over NFS
System Class A | Class W | Class A | Class W
ml.small 17MB/s | 16MB/s | 15MB/s | 14MB/s
cl.medium | 29MB/s | 29MB/s | 26MB/s | 30MB/s
using both cores, performance per core
cl.medium | 28MB/s | 28MB/s | 21MB/s | 26MB/s

Table 4. serial NAS NPB 3.3 BT-IO; Fortran I/O to local
disk and to a remote NFS drive, rounded to 2 sig.dig.

2.2.1 1/O performance

To test the I/O subsystem performance we built the latest
version of the IOR benchmark (17) in POSIX mode and
tested large write and read requests on both the local /tmp
disk as well as the remotely mounted home directory (where
the home disk was on a standard “cl.small” instance). The
results (after an fsync to negate any O/S filesystem cache ef-
fects), which present performance expectations when mem-
ory is being fully utilized, can be seen in Table 2.2.1. They
show an appreciable difference between the write and the
read performance of the standard and the High-CPU in-
stances to/from local disk. NFS performance is essentially
the same in all cases and utilizing both cores increases read
performance and decreases write performance (in both cases
by a small amount). In fact, while the read performance
from local disk appears to be close between the two instance
types, most measurements (IOR reports the best ones) were
in the range of 800MB/s for the standard one.

In order to further explore what this means with respect
to actual scientific applications (that do not have such nice
I/O patterns) we employed the BT-IO I/O benchmark out of
the MPI version of the NPB (compiled as the serial ones
previously with dummy MPI routines, set for 1 processor).
We run the tests both in the local /tmp and over NFS to see
the difference which for this test, appears to be negligible.As
seen in Table 2.2.1, the I/O performance of the cl.medium
instances is about double that of the standard instances and
this remains close to true (with a drop per core of about 20%)
even when both processes on the virtual node are doing I/O.

Summarizing, it appears that the High-CPU medium in-
stance is not five times faster than the standard instance for
the benchmarks we tested. It is in fact more deficient in terms
of memory bandwidth (that being a side effect of the archi-

tectural difference between the Opteron and Core2 cpus) and
between 2-2.5 times faster on the NAS Parallel benchmarks.
Local disk I/O performance also tends to be higher, by an ap-
proximate factor of 1.5 — 2.0. Given that this instance type
costs twice as much, it appears that it is cost-effective pro-
vided a code is not overly memory bandwidth dependent.

3. MPIon EC2

To use EC2 for anything other than bag-of-tasks type of
scientific applications, one would need to use some paral-
lel middleware. Most parallel scientific applications today
employ MPI (25) and therefore we built and installed sev-
eral MPI implementations and tested them for performance
and correctness. One major caveat for using EC2 is that we
have to use a “free” MPI implementation so that our dy-
namically generated clusters are tied to a given license. We
tested the most recent versions of LAM (7.1.2) (5), MPICH2
(1.0.7) (13), OpenMPI (1.2.6 and an alpha version of 1.3 -
1.3a1r19110) (11) and GridMPI (2.1.1) (12).

Of all the MPI implementations, the only one not to func-
tion at all was OpenMPI 1.2.6 that refused to work outside
a single box. This was traced to a check that the OpenMPI
code does to ensure all nodes are in the same subnet and
can be assumed to have routes to each other. The way EC2
is setup, even when one asks for multiple node instantiations
in one attempt, there is no guarantee that all instances booted
will be in the same subnet and in fact the vast majority of the
time they are not. We had to build an alpha version of Open-
MPI to circumvent this problem. We initially built MPICH2
using the newer, high performance “Nemesis” (4) CH3 de-
vice but after witnessing bad performance we rebuilt it for
the basic sockets configuration.

We summarize in Table 3 the basic performance pa-
rameters of the different MPI runtimes as measure by the
corresponding OMB-3.1 benchmarks (18). Both OpenMPI
and MPICH2-nemesis exhibited absolutely horrible latency
(which was very wildy varying in the 300 —600us range for
small message sizes, see Figure 3). Their asymptotic band-
widths were also very poor. No explanation for this behavior
is available to us at this time. GridMPI, LAM and MPICH2-
sock on the other hand exhibited similar (and smoother) per-
formance characteristics. in all cases a local, gigabit ethernet
based, cluster had almost 100% higher asymptotic band-
width and less than half of the small message latency.

The results show the Xen virtualization layer at best gives
us network latencies in the range of 80us and bi-directional
bandwidths in the range of 80M B/s. This is actually rather
respectable latency-wise (many of the first Beowulf clusters
had latencies above 100us). However, more recent gener-
ation gigabit ethernet clusters achieve latencies of ~ 30us.
The fact that EC2 only offers “availability zones” and not the
option of getting the same subnet coupled with the fact that
there is no way to know whether instances are sharing the
same node (and network bandwidth to/from it) further intro-

System latency | uni-bw bi-bw

LAM 81.20us | 57.85MB/s | 81.98MB/s
GridMPI 83.46us | 54.60MB/s | 77.07MB/s
MPICH2 nemesis | 300us 15.72MB/s | 26.08MB/s
MPICH2 sock 85.87us | 58.49MB/s | 83.42MB/s
OpenMPI 300us 16.44MB/s 17.99MB/s
LAM/ACES 35.83us | 117.64MB/s | 198.59MB/s

Table 5. Basic MPI communication parameters (zero size
latency, asymptotic uni- and bi-directional bandwidth) on
a cluster of standard instances. For comparison we include
values from a local physical cluster (ACES) running LAM
7.1.1.

LAM/ACES ——
LAHAEC2 —s—
GridHPI<ECE —%—
WP ICHE-Sock ECE —e—
700 MPICHE-Pemesis q

al latency cs)

Figure 1. Uni-directional latency comparison

duces performance inconsistencies due to external interfer-
ence. Some of these could possibly be ameliorated or even
done away with by using a Xen-aware MPI implementation
(16)alongside appropriately modified Xen domUs. That way
shared memory can be used between instances on the same
physical host and faster pathways to the network card can be
employed. Such efforts however would require Amazon to
be involved directly as they control the Xen domUs.

4. Application demonstration

Encouraged by the performance results describe above
we implemented a small-scale HPC application configura-
tion. The application we chose is a coupled atmosphere-
ocean configuration of the MIT General Circulation Model
(MITgcem)(14; 20; 19). Our goal in this exercise was (i)
understand the steps required to create an on-demand EC2
based cluster that could run an application typically run on
more traditional HPC platforms (ii) demonstrate the soft-
ware stack needed to take advantage of the sort of interac-
tive, on-demand capabilities such a resource could provide.

4.1 EC2 clusters on demand

In order to use EC2 in an automated way we needed to create
and destroy our clusters on demand. At present, there is

no standard infrastructure in place targeting an HPC cluster
so we had to roll our own using the EC2 API tools and
adapting some early work by other practitioners (22). In the
absence of cluster AMI combos for EC2 we created our own
cluster distribution AMI, based on Fedora Core 7 which we
customized for our needs. This allows us to take advantage
of the great variety of Earth Science tools and libraries the
Fedora Community has been making part of its package tree.

4.2 Optimized Compilers

While modern Linux distributions come with pretty capable
versions (v. 4.1+) of the GNU compiler collection, including
GFortran which is necessary for our climate codes, there
are another two high performance compilers that can be
deployed without licensing issues for academics and may
perform better, namely Open64 (7) and Sun Studio 12. In
fact in the case of the serial NPB results shown in Table
2.2 the latter provides an 11.5% performance boost for the
geometric mean of the tests (up to 25% for MG). The only
disadvantage to using multiple compilers is that the MPI
runtime needs to be rebuilt for the new compiler every time
- we have, therefore, been using the modules management
system (10) to switch between different software groups.

4.3 Queuing System

While the very nature of an on demand cluster is such that
one can use it interactively for running parallel jobs, there is
some merit in providing some rudimentary queuing system
to allow a set of jobs to be run without the need and wasted
time for setting up and tearing down new clusters. Both
Torque and GridEngine can be setup in such a way that
installation is automated and we have experimented with
both.

4.4 Input/Output and Filesystems

The most straightforward way of providing a shared diskspace
for parallel processes running on an EC2 cluster on demand
is to export home (and other if necessary) directory space
over NFS to all nodes. This is a very basic configuration that
is always desirable as it enables ease of parallel operation
(no need to propagate executables to all nodes etc.) although
the performance limitations of NFS would come into play
when the number of participating nodes becomes very large.
Hence our EC2 instance configuration scripts always export
the home directories of the head node to all other nodes.
Depending on the I/O pattern of the parallel program, it
might be advantageous to either include the head node in
the nodes participating in parallel execution or exclude it to
allow all virtual CPU resources to be dedicated to the NFS
server threads. Specifically we have seen that the best way to
handle the “traditional” I/O through the root process case (N-
to-1) is to make that process run on the master node and do
local I/O. The other extreme of every process doing its own
I/O (N-to-N) appears to be much better served by excluding
the master node to avoid competition for the virtual cpu

between NFS and compute threads/processes. However in
practice, for large enough process counts the process load
on the master node rises to a very large number and makes it
essentially unusable. In that case one might want to invest in
a different (but more expensive) instance type for the master,
with higher I/O performance and more processor cores to
handle the NFS load.

At further cost one can experiment with PVFS2 (24) or
GlusterFS (6) on demand parallel filesystems by adding ex-
tra nodes to host them. They are easily implemented and
server/client processes but in practice and under significant
I/O stress both the server as well as the client processes can
grab a full processor core. In that sense they are counter in-
dicated for use with a standard instance type and when used
with a higher instance type one should try and reserve a core
per node for the parallel filesystem client. GlusterFS does
offer a Non Uniform File Access (NUFA) policy that places
entire files on the disk connected directly to the machine the
process writing the file is running on - this scenario offers the
best opportunities for high performance for the N-to-N I/O
strategy. While it is most certainly not a high performance
option, we found the use of SSHFS (15) to crossmount re-
mote and EC2 filespace invaluable for easier setup of code
and visualization of results.

4.5 Security Issues

It has to be noted that use of EC2 on demand clusters can in-
troduce further security concerns - a more traditional physi-
cal cluster has hardened login nodes that are exposed to the
outside world and the rest of the nodes (compute and stor-
age) are usually behind a firewall on their own private sub-
net. EC2 offers the use of security groups to control firewall
settings per instantiation of a node. If one’s cluster is ex-
pected to have a significant (ie. days as opposed to hours)
lifetime, care in assigning open ports becomes far more im-
portant and all rules should be as restrictive (in terms of
allowed IP numbers) as possible. General rules that open
ranges of ports to the whole of the outside world are tempt-
ing as they make using the cluster easier but may invite trou-
ble. In fact there is also the possibility of an attack origi-
nating from within EC2 as well (another user) but that is
considered to be unlikely.

4.6 Interactive Usage with an HPC code

We’ve experimented with two major ways one would use an
EC2 cluster on demand for running scientific parallel codes:
The most straightforward approach is to setup a cluster, use it
(interactively/batch) and then terminate it. It is possible how-
ever, as describe reported in (23), to setup a cluster and con-
nect its nodes as additional nodes to an existing cluster under
a queuing system. In this paper we focus on the first, inter-
active, approach. To exploit this approach we have enhanced
an automated validating GUI generation tool Legend (8; 9)
we developed, to include the setup of an on demand EC2
cluster to the configuration of the build and runtime param-

eters of our climate, atmosphere and ocean science codes. A
screenshot of a panel from this system is shown in figure 4.6.
This approach allows a researcher that does not have any un-
derstanding of how EC2 works to setup a cluster, build and
run a code within the selected cluster image through a vali-
dating user friendly interface. Legend can run either on the
master EC2 node or locally, using SSHFES to share files with
the EC2 nodes. Using this approach we have built and run a
standard cubed sphere (approximately 2.8°) resolution cou-
pled ocean-atmosphere model on both a local cluster giga-
bit ethernet based cluster with dual socket 2.8 GHz Pentium4
(Xeon) processors and an equivalent size standard instance
based EC2 cluster. The times per timestep observed were
approximately 2 secs per timestep on both clusters showing
that the cheapest EC2 cluster can do equally well with our lo-
cal cluster. At this performance, and resolution an EC2 cloud
with twelve processors can be used, on demand, to simulate
five years of atmosphere-ocean behavior in a week of wall-
clock time.

File Tools Help

[epl_aim+ocn Description Name: ECZ cluster options

¢ CIEC2 cluster setup Set Name Type Use Value
[EC2 cluster options EC2 Cluster G... Head Node Al string Frbsie
[y PES job submission options | [EC. i
[SGE jobs submission options EE
& [cpl_aim-+ocn build Ec
o [cpl_aim+ocn_runtime

uster O |Head Node Instan___[siring
uster G__|Campute Node AM1_|siring
uster O... [Compute Node Ins...[string
uster O |Compute node nu...jnumeric

cl
cl St
& 3

cl

Hame: Compute Mode Instance Type

he instance type of the compute nodes

Figure 2. Interface panel provided by Legend that allows a
pre-configured virtual cluster image (AMI) to be requested.
The AMI contains all the software required to configure, run
and diagnose a simulation.

5. Conclusion and Future Research

We described a combination of (i) an EC2 computing cloud
on-demand cluster system with adequate performance and
(i1) a custom AMI software image designed to make the
system use as easy as possible This combination offers a
compelling case for cloud computing. Performance is below
the level seen at dedicated, supercomputer centers, however,
performance is comparable with low-cost cluster systems.
Significant performance deficiency arises from messaging
performance where latencies and bandwidths are between
one and two orders of magnitude inferior to big computer
center facilities. Nevertheless, the results are encouraging. It
is possible to envisage cloud systems more closely targeted
to HPC applications, that feature a specialized interconnect
such as Myrinet or Infiniband (with appropriate optimiza-
tions MPI and OS virtualization layers). In conjunction with
smart usability tools, such as the Legend tool used here, this
could be a very powerful addition to the HPC landscape in
the very near future.

References

[1] Amazon Inc. Amazon Web Services EC2 site.
http://aws.amazon.com/ec2, 2008.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
nas parallel benchmarks. Technical report, The International
Journal of Supercomputer Applications, 1991.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 164-177, New York, NY, USA,
2003. ACM.

[4] Darius Buntinas, Guillaume Mercier, and William Gropp.
Design and evaluation of nemesis, a scalable, low-latency,
message-passing communication subsystem. In CCGRID ’06:
Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid, pages 521-530, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[5] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open
Cluster Environment for MPI. In Proceedings of Supercom-
puting Symposium, pages 379-386, 1994.

[6] GlusterFS Developers. The Gluster web site.
http://www.gluster.org, 2008.
[7] Open64 Developers. The Opent4 web site.

http://sourceforge.net/projects/open64, 2008.

[8] C. Evangelinos, R.C. Chang P. Lermusiaux, S. Geiger, and
N.M. Patrikalakis. Web-enabled configuration and control
of legacy codes: An application to ocean modeling. Ocean
Modleing, 13(3-4):197-220, 2006.

[9] C. Evangelions and C. Hill. A schema-based paradigm for
facile description and control of a multi-component parallel,
coupled atmosphere-ocean model. In Proceedings of the 2007
symposium on Component and framework technology in high-
performance scientific computing, pages 83-92, 2007.

[10] John L. Furlani and Peter W. Osel. Abstract yourself with
modules. In LISA ’96: Proceedings of the 10th USENIX con-
ference on System administration, pages 193-204, Berkeley,
CA, USA, 1996. USENIX Association.

[11] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sa-
hay, Prabhanjan Kambadur, Brian Barrett, Andrew Lums-
daine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and de-
sign of a next generation MPI implementation. In Proceed-
ings, 11th European PVYM/MPI Users’ Group Meeting, pages
97-104, Budapest, Hungary, September 2004.

[12] GridMPI Group. Grid MPI website. http://www.gridmpi.org,
2008.

[13] William Gropp. Mpich2: A new start for mpi implementa-
tions. In Proceedings of the 9th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, page 7, London, UK,
2002. Springer-Verlag.

[14] C. Hill and J. Marshall. Application of a Parallel Navier-
Stokes Model to Ocean Circulation. In Proceedings of Paral-
lel Computational Fluid Dynamics: Implementations and Re-
sults Using Parallel Computers, pages 545-552, 1995.

[15] Matthew E. Hoskins. Sshfs: super easy file access over ssh.
Linux J., 2006(146):4, 2006.

[16] W. Huang, M. Koop, Q. Gao, and D.K. Panda. Virtual ma-
chine aware communication libraries for high performance
computing. In Proceedings of Supercomputing 2007, Reno,
Nevada, November, 2007, 2007.

[17] Lawrence Livermore National Lab. The IOR benchmark web
site. http://sourceforge.net/projects/ior-sio, 2008.

[18] Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu,
Weihang Jiang, Sushmitha Kini, Weikuan Yu, Darius Bunti-
nas, Peter Wyckoff, and D K. Panda. Performance com-
parison of mpi implementations over infiniband, myrinet and
quadrics. In SC "03: Proceedings of the 2003 ACM/IEEE con-
ference on Supercomputing, page 58, Washington, DC, USA,
2003. IEEE Computer Society.

[19] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey.
Hydrostatic, quasi-hydrostatic and nonhydrostatic ocean mod-
eling. J. Geophys. Res., 102, C3:5,753-5,766, 1997b.

[20] J. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydro-
static, quasi-hydrostatic and nonhydrostatic ocean modeling.
J. Geophys. Res., 102, C3:5,733-5,752, 1997a.

[21] J. McCalpin. The STREAM benchmark web site.
http://www.cs.virginia.edu/stream/, 2005.

[22] J. Murty. Programming Amazon Web Services. O’Reilly
Press, 2008.

[23] Hedeby Project. The Hedeby Project web site.
http://hedeby.sunsource.org, 2008.

[24] Robert Ross and Robert Latham. Pvfs: a parallel file system.
In SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 34, New York, NY, USA, 2006. ACM.

[25] Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarra,
and Steven Huss-Lederman. MPI: The Complete Reference.
MIT Press, Cambridge, MA, USA, 1995.

