
Cloud Computing And Equal Access For All

T. V. Raman
Google Inc.

raman@google.com

ABSTRACT
Web-2.0 applications use the Web as a platform for deliv-
ering end-user applications. This transformation has a pro-
found impact on how applications are authored, deployed
and consumed. Software applications in this environment
are no longer monolithic — instead, they are naturally sep-
arated into distributed components that implement applica-
tion and interaction logic. The application logic along with
user data resides in the network cloud; the user interface
made up of presentation and interaction logic is delivered in
a form best suited to the user’s needs, e.g., via a universal
client such as a Web browser.

The advantages of this usage/delivery model for main-
stream users has been widely explored in the last 18 months.
This keynote focuses on the impact of this transformation
on users with special needs. Today, the potential for uni-
versal access presented by applications delivered via the
Web remains largely unrealized. This is partly due to the
impedance mismatch that results from trying to treat inter-
active Web applications as static Web documents. Elimi-
nating this impedance mismatch requires innovation at all
levels of the technology stack with respect to:

• How Web applications are authored and deployed,

• How Web applications are consumed,

• How Web interaction is augmented by adaptive tech-
nologies.

This keynote will describe some of these challenges and
the accompanying opportunities.

1. INTRODUCTION
The Web was originally designed as a global hypertext

system for the interchange of electronic documents. But
in comparison to their print counterparts, electronic doc-
uments are interactive. The interaction facilities initially
built into HTML have been augmented over time by the ad-
dition of a universal scripting language (JavaScript) and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A2008 - Keynote April 21–22, 2008, Beijing, China. Co-Located with
the 17th International World Wide Web Conference.
Copyright 2008 ACM ...$5.00.

programmable Document Object Model (DOM) that have
together helped realize the early vision of “The Document
Is The Interface”. But the basic architecture of the Web
continues to be underpinned by the following:

HTTP A simple stateless protocol for client-server interac-
tion.

URL A universal means for addressing resources published
on the Internet.

HTML A hypertext markup language for authoring con-
tent and to aid in bringing together content address-
able via URLs.

As Web documents evolve into applications, the distributed
nature of the Web necessitates a clear separation between
application and interaction logic. This is because applica-
tion logic and user data mostly reside in the Web cloud and
manifest themselves in the form of tangible user interfaces
at the point of interaction, e.g., within a Web browser or
mobile Web client.

This separation has enabled newer Web applications to
separate the form of the underlying data being manipulated
from its representation within the user interface. As an ex-
ample, Google Calendar allows users to access and maintain
their calendar on the Web. By separating user data (in
this case, the user’s list of appointments) from a given user
interface, e.g., a table displaying the user’s appointments,
this calendar application can now manifest itself in a form
that is best suited to the user’s needs. Thus, Google Cal-
endar provides distinct desktop and mobile interfaces, both
of which manipulate the same underlying calendar. Notice
that an immediate consequence of this design is automatic
synchronization of the user’s data across the various clients
with which the user might access the calendar.

A not so immediately obvious follow-up consequence is
that it no longer matters as to which specific client the user
chooses for accessing the calendar — as long as the accessing
client is capable of manipulating the single underlying rep-
resentation. The key advantage here is that people that one
works with need not be aware of the calendar client being
used — notice that this brings Web applications like Google
Calendar on par with email — typically, reading an email
message does not require one to ask the sender what email
client he or she uses.

2. CREATING WEB APPLICATIONS

http://www.google.com/calendar

This section sketches out what is involved in creating Web
applications as a precursor to outlining the accessibility chal-
lenges and opportunities presented by this evolution.

Creating Web applications that deliver application ser-
vices such as calendaring, word-processing and email in-
volves building software components that can be classified
as:

Server Components that implement application logic and
manage user data.

Client UI components that bind to this underlying appli-
cation data-model.

The rest of this paper will focus on the components that
implement this UI binding. The binding and interaction
layers form the crux of the final user experience and are the
natural focus when it comes to creating user interfaces that
match a given user’s needs and abilities.

The complexity of a given Web application determines
its underlying data-model — and this in turn determines
the binding and user interface layers. Notice that a sophis-
ticated visual representation does not necessarily mean a
complex application data-model — to make this concrete,
consider the following examples:

Maps Online map applications such as Google Maps pro-
vide a rich user interface for browsing and navigat-
ing maps. But the underlying application data-model
is very simple — the core of the data-model encap-
sulates map coordinates of a given location. This is
augmented by additional services such as geo-coding
used to map human-readable addresses to machine-
consumable coordinates. User operations such as:

• Zoom in, zoom out

• Get directions,

• Scroll,

are exposed as a set of verbs, and the result of these
operations is an updated map view.

Spreadsheet In contrast, the underlying data-model of a
spreadsheet application is a lot more complex. The
visual presentation is a table displaying a range of cells
from the spreadsheet. But the underlying data-model
captures the relations among the cells, rows and work-
sheets making up a given spreadsheet. User operations
are also correspondingly complex, and map to verbs
such as:

• Add a work-sheet,

• Insert a row or column,

• Edit a cell-value.

• Add a dependency relation,

Consequently, the user interface has to provide the nec-
essary affordances to enable user-level access to the
various operations that are available.

Web applications use HTTP as the underlying protocol
for connecting the user interface with the application com-
ponents implemented on the server. In the case of simple

data-models such as the one described for maps, this com-
munication reduces to a set of name-value pairs that encap-
sulate the user’s request, e.g., start and end locations when
obtaining map directions. The server’s response comes back
in the form of an interactive web page that holds the rele-
vant content, along with event handlers that implement the
right interaction behavior — see ??.

Sophisticated applications such as spreadsheets or Google
Earth use hierarchically structured data — as an example,
many Google applications use ATOM Publishing Protocol
(APP) layered on HTTP to connect the client to the under-
lying application. In this usage model, application data is
exchanged using ATOM feeds, with standard HTTP verbs
— GET, POST, PUT and DELETE — mapping to the basic
operations exposed by the application. Notice that every-
thing that has been described with respect to the binding
layer is completely independent of the type of user interface
being delivered.

3. TANGIBLE USER INTERFACES
Web applications come to life when the underlying data-

model is connected to a tangible user interface. When ren-
dered to a Web browser, the user interface is instantiated
by constructing an appropriate HTML Document Object
Model (DOM). The HTML DOM holds the content to be
displayed to the user, along with the code needed to encap-
sulate interaction behavior. In this context, content consists
of traditional document constructs such as paragraphs, lists
and tables — but with the difference that all of these can be
dynamically exposed, hidden, or updated during the course
of user interaction. Interaction behavior takes the form of
event handlers that are attached at appropriate points in the
DOM. Thus, the Web user interface comprising of action-
able UI widgets embedded within information that is being
presented is ultimately realized as a dynamically updating
hypertext document.

This end-result has many of the features of traditional
HTML documents including CSS-based styling of declara-
tive markup. This similarity to traditional hypertext doc-
uments also leads to some confusion, in that it is tempting
to treat Web user interfaces as documents. A Web applica-
tion snapshot that captures the state of the user interface
at any given point in the interaction can be serialized as a
document; notice however that from the perspective of end-
to-end interaction, a Web application is not a document.
Said differently, “The document is the interface — but that
does not make the interface a document”.

4. CONSUMING WEB APPLICATIONS
Web applications are consumed on the client by interact-

ing with the result of rendering the user interface served
up as a Web page containing embedded user interface ele-
ments. Mainstream browsers often need to be augmented
with adaptive technologies such as screenreaders and screen
magnifiers to make them usable for visually impaired users.

This mode of end-user interaction has also highlighted the
impedance mismatch that exists between traditional desktop
adaptive technologies and Web applications. The situation
has been made worse by the fact that the Web application
model described in the previous section was not designed
but discovered — i.e., we started with a document-oriented
Web that has over time come to acquire the features needed

http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-09.html

to implement end-user applications. Adaptive technologies
have typically trailed, rather than led this evolutionary pro-
cess — as an example, adaptive technologies still try to treat
most of the Web as documents rather than as applications.

A direct result of this is evinced by the fact that until
recently, screenreaders had a very difficult time handling
JavaScript powered Web pages. However, the situation is
beginning to change as we start evolving the rest of the AT
stack to align with the world of Web applications. An im-
portant step in this alignment is the development of W3C
ARIA. W3C ARIA defines a set of DOM properties that can
be used to implement reflection within Web applications as
a means of allowing adaptive technologies to query the role
and state of UI elements that appear in the HTML DOM.
W3C ARIA also goes farther than traditional desktop acces-
sibility APIs by defining live regions — a light-weight mech-
anism that allows the declaration of observer/observable re-
lationships between portions of the UI.

Emerging support for these DOM extensions within main-
stream browsers, and corresponding support within screen-
readers and self-voicing browsers has now created the foun-
dation for discovering design patterns that work for users
with special needs.

5. USABLE UI PATTERNS
W3C ARIA as outlined in the previous section brings in-

page Web widgets such as scroll-bars and menus on par with
traditional desktop widgets when viewed from adaptive tech-
nologies. However, there is more to using a Web application
than interacting with the individual controls making up the
user interface — end-to-end usability of an application is fi-
nally determined by how effectively and efficiently the user
is able to complete a given task. As an example, an email
interface whose menus and sliders fail to raise the relevant
platform-specific accessibility events can appear as a black-
hole to adaptive technology — in this sense, adding W3C
ARIA support to these interaction widgets is a necessary re-
quirement. However, this in itself is not sufficient to ensure
that the entire application becomes usable.

Meeting the sufficiency requirement above requires us to
step back and ask how user interfaces have been handled
by adaptive technologies, independent of the specific in-
teraction environment used to deploy a given application.
Looking at one specific class of adaptive technologies —
screenreaders for the blind have always included application-
specific customizations to make a given application usable.
This form of customization predates today’s GUIs, and can
be traced back to the early screenreaders that ran on DOS
machines in the late 80’s. Such application-specific cus-
tomizations have been variously called:

IBM User profiles.

Vocal-Eyes User set files.

Window Eyes User set files inherited from above.

JAWS Application-specific scripts.

ORCA Application-specific Python extensions.

Emacspeak Application extensions and task-oriented Web
wizards.

Such application extensions typically implement the follow-
ing:

• The logic needed to automatically speak relevant up-
dates to a portion of the user interface.

• Augment visual elements such as icons with relevant
metadata that is found to be missing.

• Add special navigation keys to enable the user to gain
immediate random access to distinct portions of the
visual interface.

• Introduce additional user-level commands that allow
the user to query for specific items of information.

Commercial screenreaders bundle such extensions for ma-
jor applications. In this context, the arrival of Open Source
screenreaders opens up the possibility of a world where such
extensions can be developed by application authors, screen-
reader developers and end-users coming together — it may
well turn out that such extensions are much easier for ap-
plication authors to create given an open API to the speech
layer as managed by the screenreader.

Coming back to Web applications, we’re now transition-
ing from a world where users worked with a small number
of large software applications to one where the required user
affordances are delivered at the point where they are needed.
Thus, rather than using a single monolithic word-processing
application to author all documents, users depend on hav-
ing access to the needed authoring functionality at the point
where content is being created. This model of software de-
ployment where end-user services are delivered on-demand
has created a world where there are a large number of ap-
plications services developed and deployed across the Web.
The primary accessibility challenge raised by this evolution
is then the question:

Given that Web applications are developed across the
Web, how can we develop the desktop world’s equiva-
lent of application extensions at Web scale?

In general, such extensions can be delivered on the Web
by:

• Web application providers injecting the needed aug-
mentation based on user preferences. Such injection
has to be independent of any given adaptive technol-
ogy to avoid a combinatorial explosion, and to avoid
the risk of locking users into any given adaptive tech-
nology.

• Adaptive technology vendors injecting such augmen-
tation that is specific to the AT being used.

• Web user agents relying on declarative metadata to
identify relevant portions of a Web user interface, and
exposing such metadata via reflection to the adaptive
technology.

• The Web community at large experimenting with dif-
ferent approaches that work at Web scale. Such large-
scale experimentation can be used to discover and cod-
ify design patterns that work as a means of arriving at
the next generation of accessibility techniques.

The power of Web 2.0 in this respect is that the various ap-
proaches outlined above are not mutually exclusive — they
can all be realized in parallel. Here are specific instances
where each of the above is being implemented:

http://www.w3.org/TR/2008/WD-wai-aria-20080204/
http://www.w3.org/TR/2008/WD-wai-aria-20080204/

Injection Project AxsJAX is an example of a framework
that enables the injection of application-specific aug-
mentation. The injected code is independent of any
given adaptive technology — this neutrality is achieved
by building on W3C ARIA.

Screenreaders Mainstream AT vendors are beginning to
bundle scripts for popular Web applications.

Browsers Implementations of W3C ARIA automatically
turn metadata present in the HTML DOM into meta-
data that can be retrieved by adaptive technologies via
the relevant reflection APIs.

Community Google-AxsJAX was conceived as an Open
Source framework for disseminating the relevant ex-
pertise needed to access-enable Web applications. As
we AxsJAX various Google applications, these exam-
ples are being used to explain how W3C ARIA can be
leveraged to build end-to-end accessibility. In the pro-
cess, we are extracting a library of common reusable
functions that can be used across the Web for quickly
augmenting a given Web application.

6. WEB APIS AND SPECIALIZED BROWS-
ING

Finally, one of the biggest opportunities opened up by the
design of Web 2.0 applications is the arrival of high-level
Web APIs that enable the creation of custom clients. Such
custom clients can be thought of as specialized browsers
where the specialization happens along one or more of the
following axes:

Task Customized for a task, e.g., displaying the weather.
Examples include Google Gadgets and Apple Desktop
Widgets.

Environment Specialized for use in a given environment,
e.g., mobile access from small screens. Examples range
from custom mobile applications, e.g., Google Maps
for Mobile, to custom Web interfaces.

User Specialized to match a given user’s needs and abilities
at a given time. As an example, Emacspeak includes
a wide array of speech-enabled Web tools.

Notice that the architectural separation of user interface and
application back-end described earlier makes all of the above
tractable.

7. CONCLUSION
Web applications are here to stay — the advantages they

bring in terms of ubiquity are numerous. Accessing Web ap-
plications using adaptive technologies from the era of desk-
top software has been a challenge. The advantages present
in a world where user interface augmentation is delivered
using the same Web technologies used to deploy end-user
access to application services opens up a wealth of opportu-
nities for users with special needs. The advent of GUIs in
the 90’s was often labeled a serious problem for visually im-
paired users — yet, a better understanding of the underlying
issues, along with improvements in the adaptive technology
stack has led to a wider level of access to software and in-
formation. As we develop this field, I strongly believe that
we will look back at this time 10 years from now and come
to a similar conclusion about Web 2.0 applications.

http://google-axsjax.googlecode.com
http://google-axsjax.googlecode.com
http://emacspeak.sourceforge.net/raman/publications/specialized-browsers/specialized-browsers.html
http://emacspeak.googlecode.com

