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Abstract– Cloud Computing has become another buzzword after Web 
2.0. However, there are dozens of different definitions for Cloud 
Computing and there seems to be no consensus on what a Cloud is. 
On the other hand, Cloud Computing is not a completely new concept; 
it has intricate connection to the relatively new but thirteen-year 
established Grid Computing paradigm, and other relevant 
technologies such as utility computing, cluster computing, and 
distributed systems in general. This paper strives to compare and 
contrast Cloud Computing with Grid Computing from various angles 
and give insights into the essential characteristics of both. 

1 100-Mile Overview  
Cloud Computing is hinting at a future in which we won’t 
compute on local computers, but on centralized facilities 
operated by third-party compute and storage utilities. We sure 
won’t miss the shrink-wrapped software to unwrap and install. 
Needless to say, this is not a new idea. In fact, back in 1961, 
computing pioneer John McCarthy predicted that 
“computation may someday be organized as a public utility”—
and went on to speculate how this might occur. 

In the mid 1990s, the term Grid was coined to describe 
technologies that would allow consumers to obtain computing 
power on demand. Ian Foster and others posited that by 
standardizing the protocols used to request computing power, 
we could spur the creation of a Computing Grid, analogous in 
form and utility to the electric power grid. Researchers 
subsequently developed these ideas in many exciting ways, 
producing for example large-scale federated systems (TeraGrid, 
Open Science Grid, caBIG, EGEE, Earth System Grid) that 
provide not just computing power, but also data and software, 
on demand. Standards organizations (e.g., OGF, OASIS) 
defined relevant standards. More prosaically, the term was also 
co-opted by industry as a marketing term for clusters. But no 
viable commercial Grid Computing providers emerged, at least 
not until recently. 

So is “Cloud Computing” just a new name for Grid? In 
information technology, where technology scales by an order 
of magnitude, and in the process reinvents itself, every five 
years, there is no straightforward answer to such questions. 

Yes: the vision is the same—to reduce the cost of computing, 
increase reliability, and increase flexibility by transforming 
computers from something that we buy and operate ourselves 
to something that is operated by a third party. 

But no: things are different now than they were 10 years ago. 
We have a new need to analyze massive data, thus motivating 
greatly increased demand for computing. Having realized the 
benefits of moving from mainframes to commodity clusters, 

we find that those clusters are quite expensive to operate. We 
have low-cost virtualization. And, above all, we have multiple 
billions of dollars being spent by the likes of Amazon, Google, 
and Microsoft to create real commercial large-scale systems 
containing hundreds of thousands of computers. The prospect 
of needing only a credit card to get on-demand access to 
100,000+ computers in tens of data centers distributed 
throughout the world—resources that be applied to problems 
with massive, potentially distributed data, is exciting! So we 
are operating at a different scale, and operating at these new, 
more massive scales can demand fundamentally different 
approaches to tackling problems. It also enables—indeed is 
often only applicable to—entirely new problems. 

Nevertheless, yes: the problems are mostly the same in Clouds 
and Grids. There is a common need to be able to manage large 
facilities; to define methods by which consumers discover, 
request, and use resources provided by the central facilities; 
and to implement the often highly parallel computations that 
execute on those resources. Details differ, but the two 
communities are struggling with many of the same issues. 

1.1 Defining Cloud Computing 
There is little consensus on how to define the Cloud [49]. We 
add yet another definition to the already saturated list of 
definitions for Cloud Computing: 

A large-scale distributed computing paradigm that is 
driven by economies of scale, in which a pool of 
abstracted, virtualized, dynamically-scalable, managed 
computing power, storage, platforms, and services are 
delivered on demand to external customers over the 
Internet. 

There are a few key points in this definition. First, Cloud 
Computing is a specialized distributed computing paradigm; it 
differs from traditional ones in that 1) it is massively scalable, 
2) can be encapsulated as an abstract entity that delivers 
different levels of services to customers outside the Cloud, 3) it 
is driven by economies of scale [44], and 4) the services can be 
dynamically configured (via virtualization or other approaches) 
and delivered on demand.  

Governments, research institutes, and industry leaders are 
rushing to adopt Cloud Computing to solve their ever-
increasing computing and storage problems arising in the 
Internet Age. There are three main factors contributing to the 
surge and interests in Cloud Computing: 1) rapid decrease in 
hardware cost and increase in computing power and storage 
capacity, and the advent of multi-core architecture and modern 
supercomputers consisting of hundreds of thousands of cores; 



2) the exponentially growing data size in scientific 
instrumentation/simulation and Internet publishing and 
archiving; and 3) the wide-spread adoption of Services 
Computing and Web 2.0 applications. 

1.2 Clouds, Grids, and Distributed Systems 
Many discerning readers will immediately notice that our 
definition of Cloud Computing overlaps with many existing 
technologies, such as Grid Computing, Utility Computing, 
Services Computing, and distributed computing in general. We 
argue that Cloud Computing not only overlaps with Grid 
Computing, it is indeed evolved out of Grid Computing and 
relies on Grid Computing as its backbone and infrastructure 
support. The evolution has been a result of a shift in focus 
from an infrastructure that delivers storage and compute 
resources (such is the case in Grids) to one that is economy 
based aiming to deliver more abstract resources and services 
(such is the case in Clouds). As for Utility Computing, it is not 
a new paradigm of computing infrastructure; rather, it is a 
business model in which computing resources, such as 
computation and storage, are packaged as metered services 
similar to a physical public utility, such as electricity and 
public switched telephone network. Utility computing is 
typically implemented using other computing infrastructure 
(e.g. Grids) with additional accounting and monitoring services. 
A Cloud infrastructure can be utilized internally by a company 
or exposed to the public as utility computing.  

See Figure 1 for an overview of the relationship between 
Clouds and other domains that it overlaps with. Web 2.0 
covers almost the whole spectrum of service-oriented 
applications, where Cloud Computing lies at the large-scale 
side. Supercomputing and Cluster Computing have been more 
focused on traditional non-service applications. Grid 
Computing overlaps with all these fields where it is generally 
considered of lesser scale than supercomputers and Clouds.  

 
Figure 1: Grids and Clouds Overview 

Grid Computing aims to “enable resource sharing and 
coordinated problem solving in dynamic, multi-institutional 
virtual organizations” [18][20]. There are also a few key 
features to this definition: First of all, Grids provide a 

distributed computing paradigm or infrastructure that spans 
across multiple virtual organizations (VO) where each VO can 
consist of either physically distributed institutions or logically 
related projects/groups. The goal of such a paradigm is to 
enable federated resource sharing in dynamic, distributed 
environments. The approach taken by the de facto standard 
implementation – The Globus Toolkit [16][23], is to build a 
uniform computing environment from diverse resources by 
defining standard network protocols and providing middleware 
to mediate access to a wide range of heterogeneous resources. 
Globus addresses various issues such as security, resource 
discovery, resource provisioning and management, job 
scheduling, monitoring, and data management. 

Half a decade ago, Ian Foster gave a three point checklist [19] 
to help define what is, and what is not a Grid: 1) coordinates 
resources that are not subject to centralized control, 2) uses 
standard, open, general-purpose protocols and interfaces, and 3) 
delivers non-trivial qualities of service. Although point 3 holds 
true for Cloud Computing, neither point 1 nor point 2 is clear 
that it is the case for today’s Clouds. The vision for Clouds and 
Grids are similar, details and technologies used may differ, but 
the two communities are struggling with many of the same 
issues. This paper strives to compare and contrast Cloud 
Computing with Grid Computing from various angles and give 
insights into the essential characteristics of both, with the hope 
to paint a less cloudy picture of what Clouds are, what kind of 
applications can Clouds expect to support, and what challenges 
Clouds are likely to face in the coming years as they gain 
momentum and adoption. We hope this will help both 
communities gain deeper understanding of the goals, 
assumptions, status, and directions, and provide a more 
detailed view of both technologies to the general audience.  

2 Comparing Grids and Clouds Side-by-Side 
This section aims to compare Grids and Clouds across a wide 
variety of perspectives, from architecture, security model, 
business model, programming model, virtualization, data 
model, compute model, to provenance and applications. We 
also outline a number of challenges and opportunities that Grid 
Computing and Cloud Computing bring to researchers and the 
IT industry, most common to both, but some are specific to 
one or the other.  

2.1 Business Model  
Traditional business model for software has been a one-time 
payment for unlimited use (usually on 1 computer) of the 
software. In a cloud-based business model, a customer will pay 
the provider on a consumption basis, very much like the utility 
companies charge for basic utilities such as electricity, gas, and 
water, and the model relies on economies of scale in order to 
drive prices down for users and profits up for providers. Today, 
Amazon essentially provides a centralized Cloud consisting of 
Compute Cloud EC2 and Data Cloud S3. The former is 
charged based on per instance-hour consumed for each 
instance type and the later is charged by per GB-Month of 
storage used. In addition, data transfer is charged by TB / 
month data transfer, depending on the source and target of 
such transfer. The prospect of needing only a credit card to get 
on-demand access to 100,000+ processors in tens of data 
centers distributed throughout the world—resources that be 



applied to problems with massive, potentially distributed data, 
is exciting! 

The business model for Grids (at least that found in academia 
or government labs) is project-oriented in which the users or 
community represented by that proposal have certain number 
of service units (i.e. CPU hours) they can spend. For example, 
the TeraGrid operates in this fashion, and requires increasingly 
complex proposals be written for increasing number of 
computational power. The TeraGrid has more than a dozen 
Grid sites, all hosted at various institutions around the country. 
What makes an institution want to join the TeraGrid? When an 
institution joins the TeraGrid with a set of resources, it knows 
that others in the community can now use these resources 
across the country. It also acknowledges the fact that it gains 
access to a dozen other Grid sites. This same model has 
worked rather well for many Grids around the globe, giving 
institutions incentives to join various Grids for access to 
additional resources for all the users from the corresponding 
institution.  

There are also endeavors to build a Grid economy for a global 
Grid infrastructure that supports the trading, negotiation, 
provisioning, and allocation of resources based on the levels of 
services provided, risk and cost, and users’ preferences; so far, 
resource exchange (e.g. trade storage for compute cycles), 
auctions, game theory based resource coordination, virtual 
currencies, resource brokers and intermediaries, and various 
other economic models have been proposed and applied in 
practice [8].  

2.2 Architecture 
Grids started off in the mid-90s to address large-scale 
computation problems using a network of resource-sharing 
commodity machines that deliver the computation power 
affordable only by supercomputers and large dedicated clusters 
at that time. The major motivation was that these high 
performance computing resources were expensive and hard to 
get access to, so the starting point was to use federated 
resources that could comprise compute, storage and network 
resources from multiple geographically distributed institutions, 
and such resources are generally heterogeneous and dynamic. 
Grids focused on integrating existing resources with their 
hardware, operating systems, local resource management, and 
security infrastructure.  

In order to support the creation of the so called “Virtual 
Organizations”—a logical entity within which distributed 
resources can be discovered and shared as if they were from 
the same organization, Grids define and provide a set of 
standard protocols, middleware, toolkits, and services built on 
top of these protocols. Interoperability and security are the 
primary concerns for the Grid infrastructure as resources may 
come from different administrative domains, which have both 
global and local resource usage policies, different hardware 
and software configurations and platforms, and vary in 
availability and capacity.  

Grids provide protocols and services at five different layers as 
identified in the Grid protocol architecture (see Figure 2). At 
the fabric layer, Grids provide access to different resource 
types such as compute, storage and network resource, code 
repository, etc. Grids usually rely on existing fabric 

components, for instance, local resource managers (i.e. PBS 
[5], Condor [48], etc). General-purpose components such as 
GARA (general architecture for advanced reservation) [17], 
and specialized resource management services such as Falkon 
[40] (although strictly speaking, Falkon also provides services 
beyond the fabric layer).  

 
Figure 2: Grid Protocol Architecture 

The connectivity layer defines core communication and 
authentication protocols for easy and secure network 
transactions. The GSI (Grid Security Infrastructure) [27] 
protocol underlies every Grid transaction.  

The resource layer defines protocols for the publication, 
discovery, negotiation, monitoring, accounting and payment of 
sharing operations on individual resources. The GRAM (Grid 
Resource Access and Management) [16] protocol is used for 
allocation of computational resources and for monitoring and 
control of computation on those resources, and GridFTP [2] 
for data access and high-speed data transfer.  

The collective layer captures interactions across collections of 
resources, directory services such as MDS (Monitoring and 
Discovery Service) [43] allows for the monitoring and 
discovery of VO resources, Condor-G [24] and Nimrod-G [7] 
are examples of co-allocating, scheduling and brokering 
services, and MPICH [32] for Grid enabled programming 
systems, and CAS (community authorization service) [21] for 
global resource policies.  

The application layer comprises whatever user applications 
built on top of the above protocols and APIs and operate in VO 
environments. Two examples are Grid workflow systems, and 
Grid portals (i.e. QuarkNet e-learning environment [52], 
National Virtual Observatory (http://www.us-vo.org), 
TeraGrid Science gateway (http://www.teragrid.org)).  

Clouds are developed to address Internet-scale computing 
problems where some assumptions are different from those of 
the Grids. Clouds are usually referred to as a large pool of 
computing and/or storage resources, which can be accessed via 
standard protocols via an abstract interface. Clouds can be 
built on top of many existing protocols such as Web Services 
(WSDL, SOAP), and some advanced Web 2.0 technologies 
such as REST, RSS, AJAX, etc. In fact, behind the cover, it is 
possible for Clouds to be implemented over existing Grid 
technologies leveraging more than a decade of community 



efforts in standardization, security, resource management, and 
virtualization support. 

There are also multiple versions of definition for Cloud 
architecture, we define a four-layer architecture for Cloud 
Computing in comparison to the Grid architecture, composed 
of 1) fabric, 2) unified resource, 3) platform, and 4) application 
Layers. 

 
Figure 3: Cloud Architecture 

The fabric layer contains the raw hardware level resources, 
such as compute resources, storage resources, and network 
resources. The unified resource layer contains resources that 
have been abstracted/encapsulated (usually by virtualization) 
so that they can be exposed to upper layer and end users as 
integrated resources, for instance, a virtual computer/cluster, a 
logical file system, a database system, etc. The platform layer 
adds on a collection of specialized tools, middleware and 
services on top of the unified resources to provide a 
development and/or deployment platform. For instance, a Web 
hosting environment, a scheduling service, etc. Finally, the 
application layer contains the applications that would run in 
the Clouds. 

Clouds in general provide services at three different levels 
(IaaS, PaaS, and Saas [50]) as follows, although some 
providers can choose to expose services at more than one level. 
Infrastructure as a Service (IaaS) [50] provisions hardware, 
software, and equipments (mostly at the unified resource layer, 
but can also include part of the fabric layer) to deliver software 
application environments with a resource usage-based pricing 
model. Infrastructure can scale up and down dynamically 
based on application resource needs. Typical examples are 
Amazon EC2 (Elastic Cloud Computing) Service [3] and S3 
(Simple Storage Service) [4] where compute and storage 
infrastructures are open to public access with a utility pricing 
model; Eucalyptus [15] is an open source Cloud 
implementation that provides a compatible interface to 
Amazon’s EC2, and allows people to set up a Cloud 
infrastructure at premise and experiment prior to buying 
commercial services.  
Platform as a Service (PaaS) [50] offers a high-level 
integrated environment to build, test, and deploy custom 
applications. Generally, developers will need to accept some 
restrictions on the type of software they can write in exchange 
for built-in application scalability.  An example is Google’s 
App Engine [28], which enables users to build Web 

applications on the same scalable systems that power Google 
applications.  
Software as a Service (SaaS) [50] delivers special-purpose 
software that is remotely accessible by consumers through the 
Internet with a usage-based pricing model. Salesforce is an 
industry leader in providing online CRM (Customer 
Relationship Management) Services. Live Mesh from 
Microsoft allows files and folders to be shared and 
synchronized across multiple devices.  

Although Clouds provide services at three different levels 
(IaaS, PaaS, and Saas), standards for interfaces to these 
different levels still remain to be defined. This leads to 
interoperability problems between today’s Clouds, and there is 
little business incentives for Cloud providers to invest 
additional resources in defining and implementing new 
interfaces. As Clouds mature, and more sophisticated 
applications and services emerge that require the use of 
multiple Clouds, there will be growing incentives to adopt 
standard interfaces that facilitate interoperability in order to 
capture emerging and growing markets in a saturated Cloud 
market.  

2.3 Resource Management 
This section describes the resource management found in 
Grids and Clouds, covering topics such as the compute model, 
data model, virtualization, monitoring, and provenance. These 
topics are extremely important to understand the main 
challenges that both Grids and Clouds face today, and will 
have to overcome in the future.  

Compute Model: Most Grids use a batch-scheduled compute 
model, in which a local resource manager (LRM), such as PBS, 
Condor, SGE manages the compute resources for a Grid site, 
and users submit batch jobs (via GRAM) to request some 
resources for some time. Many Grids have policies in place 
that enforce these batch jobs to identify the user and 
credentials under which the job will run for accounting and 
security purposes, the number of processors needed, and the 
duration of the allocation. For example, a job could say, stage 
in the input data from a URL to the local storage, run the 
application for 60 minutes on 100 processors, and stage out the 
results to some FTP server. The job would wait in the LRM’s 
wait queue until the 100 processors were available for 60 
minutes, at which point the 100 processors would be allocated 
and dedicated to the application for the duration of the job. 
Due to the expensive scheduling decisions, data staging in and 
out, and potentially long queue times, many Grids don’t 
natively support interactive applications; although there are 
efforts in the Grid community to enable lower latencies to 
resources via multi-level scheduling, to allow applications with 
many short-running tasks to execute efficiently on Grids [40]. 
Cloud Computing compute model will likely look very 
different, with resources in the Cloud being shared by all users 
at the same time (in contrast to dedicated resources governed 
by a queuing system). This should allow latency sensitive 
applications to operate natively on Clouds, although ensuring a 
good enough level of QoS is being delivered to the end users 
will not be trivial, and will likely be one of the major 
challenges for Cloud Computing as the Clouds grow in scale, 
and number of users.  
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Data Model: While some people boldly predicate that future 
Internet Computing will be towards Cloud Computing 
centralized, in which storage, computing, and all kind of other 
resources will mainly be provisioned by the Cloud, we 
envision that the next-generation Internet Computing will take 
the triangle model shown in Figure 4: Internet Computing will 
be centralized around Data, Clouding Computing, as well as 
Client Computing. Cloud Computing and Client Computing 
will coexist and evolve hand in hand, while data management 
(mapping, partitioning, querying, movement, caching, 
replication, etc) will become more and more important for both 
Cloud Computing and Client Computing with the increase of 
data-intensive applications.  

The critical role of Cloud Computing goes without saying, but 
the importance of Client Computing cannot be overlooked 
either for several reasons: 1) For security reasons, people 
might not be willing to run mission-critical applications on the 
Cloud and send sensitive data to the Cloud for processing and 
storage; 2) Users want to get their things done even when the 
Internet and Cloud are down or the network communication is 
slow; 3) With the advances of multi-core technology, the 
coming decade will bring the possibilities of having a desktop 
supercomputer with 100s to 1000s of hardware threads/cores. 
Furthermore, many end-users will have various hardware-
driven end-functionalities, such as visualization and 
multimedia playback, which will typically run locally. 

 
Figure 4 The triangle model of next-generation Internet Computing. 

The importance of data has caught the attention of the Grid 
community for the past decade; Data Grids [10] have been 
specifically designed to tackle data intensive applications in 
Grid environments, with the concept of virtual data [22] 
playing a crucial role. Virtual data captures the relationship 
between data, programs and computations and prescribes 
various abstractions that a data grid can provide: location 
transparency where data can be requested without regard to 
data location, a distributed metadata catalog is engaged to keep 
track of the locations of each piece of data (along with its 
replicas) across grid sites, and privacy and access control are 
enforced; materialization transparency: data can be either re-
computed on the fly or transferred upon request, depending on 
the availability of the data and the cost to re-compute. There is 
also representation transparency where data can be consumed 
and produced no matter what their actual physical formats and 
storage are, data are mapped into some abstract structural 
representation and manipulated in that way. 

Data Locality: As CPU cycles become cheaper and data sets 
double in size every year, the main challenge for efficient 

scaling of applications is the location of the data relative to the 
available computational resources – moving the data 
repeatedly to distant CPUs is becoming the bottleneck. [46] 
There are large differences in IO speeds from local disk 
storage to wide area networks, which can drastically affect 
application performance. To achieve good scalability at 
Internet scales for Clouds, Grids, and their applications, data 
must be distributed over many computers, and computations 
must be steered towards the best place to execute in order to 
minimize the communication costs [46]. Google’s MapReduce 
[13] system runs on top of the Google File System, within 
which data is loaded, partitioned into chunks, and each chunk 
replicated. Thus data processing is collocated with data storage: 
when a file needs to be processed, the job scheduler consults a 
storage metadata service to get the host node for each chunk, 
and then schedules a “map” process on that node, so that data 
locality is exploited efficiently. In Grids, data storage usually 
relies on a shared file systems (e.g. NFS, GPFS, PVFS, Luster), 
where data locality cannot be easily applied. One approach is 
to improve schedulers to be data-aware, and to be able to 
leverage data locality information when scheduling 
computational tasks; this approach has shown to improve job 
turn-around time significantly [41].  

Combining compute and data management: Even more 
critical is the combination of the compute and data resource 
management, which leverages data locality in access patterns 
to minimize the amount of data movement and improve end-
application performance and scalability. Attempting to address 
the storage and computational problems separately forces 
much data movement between computational and storage 
resources, which will not scale to tomorrow’s peta-scale 
datasets and millions of processors, and will yield significant 
underutilization of the raw resources. It is important to 
schedule computational tasks close to the data, and to 
understand the costs of moving the work as opposed to moving 
the data. Data-aware schedulers and dispersing data close to 
processors is critical in achieving good scalability and 
performance. Finally, as the number of processor-cores is 
increasing (the largest supercomputers today have over 200K 
processors and Grids surpassing 100K processors), there is an 
ever-growing emphasis for support of high throughput 
computing with high sustainable dispatch and execution rates. 
We believe that data management architectures are important 
to ensure that the data management implementations scale to 
the required dataset sizes in the number of files, objects, and 
dataset disk space usage while at the same time, ensuring that 
data element information can be retrieved fast and efficiently. 
Grids have been making progress in combining compute and 
data management with data-aware schedulers [41], but we 
believe that Clouds will face significant challenges in handling 
data-intensive applications without serious efforts invested in 
harnessing the data locality of application access patterns. 
Although data-intensive applications may not be typical 
applications that Clouds deal with today, as the scales of 
Clouds grow, it may just be a matter of time for many Clouds.  

Virtualization: Virtualization has become an indispensable 
ingredient for almost every Cloud, the most obvious reasons 
are for abstraction and encapsulation. Just like threads were 
introduced to provide users the “illusion” as if the computer 
were running all the threads simultaneously, and each thread 



were using all the available resources, Clouds need to run 
multiple (or even up to thousands or millions of) user 
applications, and all the applications appear to the users as if 
they were running simultaneously and could use all the 
available resources in the Cloud. Virtualization provides the 
necessary abstraction such that the underlying fabric (raw 
compute, storage, network resources) can be unified as a pool 
of resources and resource overlays (e.g. data storage services, 
Web hosting environments) can be built on top of them. 
Virtualization also enables each application to be encapsulated 
such that they can be configured, deployed, started, migrated, 
suspended, resumed, stopped, etc., and thus provides better 
security, manageability, and isolation. 

There are also many other reasons that Clouds tend to adopt 
virtualization: 1) server and application consolidation, as 
multiple applications can be run on the same server, resources 
can be utilized more efficiently; 2) configurability, as the 
resource requirements for various applications could differ 
significantly, some require large storage, some compute, in 
order to dynamically configure and bundle (aggregate) 
resources for various needs, virtualization is necessary as this 
is not achievable at the hardware level; 3) increased 
application availability, virtualization allows quick recovery 
from unplanned outages, as virtual environments can be 
backed up and migrated with no interruption in service; 4) 
improved responsiveness: resource provisioning, monitoring 
and maintenance can be automated, and common resources can 
be cached and reused. All these features of virtualization 
provide the basis for Clouds to meet stringent SLA (Service 
Level Agreement) requirements in a business setting, which 
cannot be easily achieved with a non-virtualized environment 
in a cost-effective manner as systems would have to be over-
provisioned to handle peak load and waste resources in idle 
periods. After all, a virtualization infrastructure can be just 
thought as a mapping from IT resources to business needs. 

Grids do not rely on virtualization as much as Clouds do, but 
that might be more due to policy and having each individual 
organization maintain full control of their resources (i.e. by not 
virtualizing them). However, there are efforts in Grids to use 
virtualization as well, such as Nimbus [56] (previously known 
as the Virtual Workspace Service [26]), which provide the 
same abstraction and dynamic deployment capabilities. A 
virtual workspace is an execution environment that can be 
deployed dynamically and securely in the Grid. Nimbus 
provides two levels of guarantees: 1) quality of life: users get 
exactly the (software) environment they need, and 2) quality of 
service: provision and guarantee all the resources the 
workspace needs to function correctly (CPU, memory, disk, 
bandwidth, availability), allowing for dynamic renegotiation to 
reflect changing requirements and conditions. In addition, 
Nimbus can also provision a virtual cluster for Grid 
applications (e.g. a batch scheduler, or a workflow system), 
which is also dynamically configurable, a growing trend in 
Grid Computing.  

It is also worth noting that virtualization – in the past – had 
significant performance losses for some applications, which 
has been one of the primary disadvantage of using 
virtualization. However, over the past few years, processor 
manufacturers such as AMD and Intel have been introducing 

hardware support for virtualization, which is helping narrow 
the performance gap between applications performance on 
virtualized resources as it compares with that on traditional 
operating systems without virtualization.  

Monitoring: Another challenge that virtualization brings to 
Clouds is the potential difficulty in fine-control over the 
monitoring of resources. Although many Grids (such as 
TeraGrid) also enforce restrictions on what kind of sensors or 
long-running services a user can launch, Cloud monitoring is 
not as straightforward as in Grids, because Grids in general 
have a different trust model in which users via their identity 
delegation can access and browse resources at different Grid 
sites, and Grid resources are not highly abstracted and 
virtualized as in Clouds; for example, the Ganglia [25] 
distributed (and hierarchical) monitoring system can monitor a 
federation of clusters and Grids and has seen wide adoption in 
the Grid community. In a Cloud, different levels of services 
can be offered to an end user, the user is only exposed to a pre-
defined API, and the lower level resources are opaque to the 
user (especially at the PaaS and SaaS level, although some 
providers may choose to expose monitoring information at 
these levels). The user does not have the liberty to deploy her 
own monitoring infrastructure, and the limited information 
returned to the user may not provide the necessary level of 
details for her to figure out what the resource status is. The 
same problems potentially exist for Cloud developers and 
administrators, as the abstract/unified resources usually go 
through virtualization and some other level of encapsulation, 
and tracking the issues down the software/hardware stack 
might be more difficult. Essentially monitoring in Clouds 
requires a fine balance of business application monitoring, 
enterprise server management, virtual machine monitoring, and 
hardware maintenance, and will be a significant challenge for 
Cloud Computing as it sees wider adoption and deployments. 
On the other hand, monitoring can be argued to be less 
important in Clouds, as users are interacting with a more 
abstract layer that is potentially more sophisticated; this 
abstract layer could respond to failures and quality of service 
(QoS) requirements automatically in a general-purpose way 
irrespective of application logic. In the near future, user-end 
monitoring might be a significant challenge for Clouds, but it 
will become less important as Clouds become more 
sophisticated and more self-maintained and self-healing. 

Provenance: Provenance refers to the derivation history of a 
data product, including all the data sources, intermediate data 
products, and the procedures that were applied to produce the 
data product. Provenance information is vital in understanding, 
discovering, validating, and sharing a certain data product as 
well as the applications and programs used to derive it. In 
some disciplines such as finance and medicine, it is also 
mandatory to provide what is called an “audit trail” for 
audition purpose. In Grids, provenance management has been 
in general built into a workflow system, from early pioneers 
such as Chimera [22], to modern scientific workflow systems, 
such as Swift [53], Kepler [35], and VIEW [34] to support the 
discovery and reproducibility of scientific results. It has also 
been built as a standalone service, such as PreServ [29], to 
facilitate the integration of provenance component in more 
general computing models, and deal with trust issues in 
provenance assertion. Using provenance information, scientists 



can debug workflow execution, validate or invalidate scientific 
results, and guide future workflow design and data exploration. 
While provenance has first shown its promise in scientific 
workflow systems [22] and database systems [47], a long-term 
vision is that provenance will be useful in other systems as 
well, necessitating the development of a standard, open, and 
universal representation and query model. Currently, the 
provenance challenge series [39] and the open provenance 
model initiative [38] provide the active forums for these 
standardization effort and interaction. On the other hand, 
Clouds are becoming the future playground for e-science 
research, and provenance management is extremely important 
in order to track the processes and support the reproducibility 
of scientific results [45]. Provenance is still an unexplored area 
in Cloud environments, in which we need to deal with even 
more challenging issues such as tracking data production 
across different service providers (with different platform 
visibility and access policies) and across different software and 
hardware abstraction layers within one provider. In other 
words, capturing and managing provenance in Cloud 
environments may prove to be more difficult than in Grids, 
since in the latter there are already a few provenance systems 
and initiatives, however scalable provenance querying [55] and 
secure access of provenance information are still open 
problems for both Grids and Clouds environments. 

2.4 Programming Model  
Although programming model in Grid environments does not 
differ fundamentally from traditional parallel and distributed 
environments, it is obviously complicated by issues such as 
multiple administrative domains; large variations in resource 
heterogeneity, stability and performance; exception handling in 
highly dynamic (in that resources can join and leave pretty 
much at any time) environments, etc. Grids primarily target 
large-scale scientific computations, so it must scale to leverage 
large number/amount of resources, and we would also 
naturally want to make programs run fast and efficient in Grid 
environments, and programs also need to finish correctly, so 
reliability and fault tolerance must be considered.  

We briefly discuss here some general programming models in 
Grids. MPI (Message Passing Interface) [36] is the most 
commonly used programming model in parallel computing, in 
which a set of tasks use their own local memory during 
computation and communicate by sending and receiving 
messages. MPICH-G2 [32] is a Grid enabled implementation 
of MPI. It gives the familiar interface of MPI while providing 
integration with the Globus Toolkit. Coordination languages 
also allow a number of possibly heterogeneous components to 
communicate and interact, offering facilities for the 
specification, interaction, and dynamic composition of 
distributed (concurrent) components. For instance, Linda [1] 
defines a set of coordination primitives to put and retrieve 
tuples from a shared dataspace called the tuple space. It has 
been shown to be straightforward to use such primitives to 
implement a master-worker parallel scheduler. The Ninf-G 
GridRPC [37] system integrates a Grid RPC (Remote 
Procedure Call) layer on top of the Globus toolkit. It publishes 
interfaces and function libraries in MDS, and utilizes GRAM 
to invoke remote executables. In Grids, however, many 
applications are loosely coupled in that the output of one may 

be passed as input to one or more others—for example, as a 
file, or via a Web Services invocation. While such “loosely 
coupled” computations can involve large amounts of 
computation and communication, the concerns of the 
programmer tend to be different from those in traditional high 
performance computing, being focused on management issues 
relating to the large numbers of datasets and tasks rather than 
the optimization of interprocessor communication. In such 
cases, workflow systems [54] suit better in the specification 
and execution of such applications. More specifically, a 
workflow system allows the composition of individual (single 
step) components into a complex dependency graph, and it 
governs the flow of data and/or control through these 
components. An example is the Swift system [53], which 
bridges scientific workflows with parallel computing. It is a 
parallel programming tool for rapid and reliable specification, 
execution, and management of large-scale science and 
engineering workflows. The Swift runtime system relies on the 
CoG Karajan [33] workflow engine for efficient scheduling 
and load balancing, and it integrates the Falkon light-weight 
task execution service for optimized task throughput and 
resource efficiency [40]. WSRF (Web Services Resource 
Framework) has emerged from OGSA (Open Grid Service 
Architecture) [11] as more and more Grid applications are 
developed as services. WSRF allows Web Services to become 
stateful, and it provides a set of operations to set and retrieve 
the states (resources). The Globus Toolkit version 4 contains 
Java and C implementations of WSRF, most of the Globus 
core services have been re-engineered to build around WSRF, 
these altogether will enable service oriented Grid programming 
model.   

MapReduce [13] is only yet another parallel programming 
model, providing a programming model and runtime system 
for the processing of large datasets, and it is based on a simple 
model with just two key functions: “map” and “reduce,” 
borrowed from functional languages. The map function applies 
a specific operation to each of a set of items, producing a new 
set of items; a reduce function performs aggregation on a set of 
items. The MapReduce runtime system automatically 
partitions input data and schedules the execution of programs 
in a large cluster of commodity machines. The system is made 
fault tolerant by checking worker nodes periodically and 
reassigning failed jobs to other worker nodes. Sawzall is an 
interpreted language that builds on MapReduce and separates 
the filtering and aggregation phases for more concise program 
specification and better parallelization. Hadoop [30] is the 
open source implementation of the MapReduce model, and Pig 
is a declarative programming language offered on top of 
Hadoop. Microsoft has developed the Cosmos distributed 
storage system and Dryad processing framework, and offers 
DryadLINQ [31] and Scope as declarative programming model 
on top of the storage and computing infrastructure. 
DryadLINQ uses the object oriented LINQ query syntax where 
Scope provides basic operators similar to those of SQL such as 
Select, Join, Aggregation etc, both translate the abstract 
specification into detailed execution plan.  

Mesh-up’s and scripting (Java Script, PHP, Python etc) have 
been taking the place of a workflow system in the Cloud world, 
since there is no easy way to integrate services and 
applications from various providers. They are essentially data 



integration approaches, because they take outputs from one 
service/application, transform them and feed into another. 
Google App Engine uses a modified Python runtime and 
chooses Python scripting language for Web application 
development, the interface to its underlying BigTable storage 
system is some proprietary query language (named, as you 
would think, GQL) that is reminiscent of SQL, although all 
these will probably change. Clouds (such as Amazon Web 
Services, Microsoft’s Azure Services Platform) have generally 
adopted Web Services APIs where users access, configure and 
program Cloud services using pre-defined APIs exposed as 
Web services, and HTTP and SOAP are the common protocols 
chosen for such services. Although Clouds adopted some 
common communication protocols such as HTTP and SOAP, 
the integration and interoperability of all the services and 
applications remain the biggest challenge, as users need to tap 
into a federation of Clouds instead of a single Cloud provider.  

2.5 Application Model 
Grids generally support many different kinds of applications, 
ranging from high performance computing (HPC) to high 
throughput computing (HTC). HPC applications are efficient 
at executing tightly coupled parallel jobs within a particular 
machine with low-latency interconnects and are generally not 
executed across a wide area network Grid; these applications 
typically use message passing interface (MPI) to achieve the 
needed inter-process communication. On the other hand, Grids 
have also seen great success in the execution of more loosely 
coupled applications that tend to be managed and executed 
through workflow systems or other sophisticated and complex 
applications. Related to HTC applications loosely coupled 
nature, there are other application classes, such Multiple 
Program Multiple Data (MPMD), MTC, capacity computing, 
utility computing, and embarrassingly parallel, each with their 
own niches [42]. These loosely coupled applications can be 
composed of many tasks (both independent and dependent 
tasks) that can be individually scheduled on many different 
computing resources across multiple administrative boundaries 
to achieve some larger application goal. Tasks may be small or 
large, uniprocessor or multiprocessor, compute-intensive or 
data-intensive. The set of tasks may be static or dynamic, 
homogeneous or heterogeneous, loosely or tightly coupled. 
The aggregate number of tasks, quantity of computing, and 
volumes of data could be small but also extremely large.   

On the other hand, Cloud Computing could in principle cater 
to a similar set of applications. The one exception that will 
likely be hard to achieve in Cloud Computing (but has had 
much success in Grids) are HPC applications that require fast 
and low latency network interconnects for efficient scaling to 
many processors. As Cloud Computing is still in its infancy, 
the applications that will run on Clouds are not well defined, 
but we can certainly characterize them to be loosely coupled, 
transaction oriented (small tasks in the order of milliseconds to 
seconds), and likely to be interactive (as opposed to batch-
scheduled as they are currently in Grids). 

Another emerging class of applications in Grids is scientific 
gateways [51], which are front-ends to a variety of applications 
that can be anything from loosely-coupled to tightly-coupled. 
A Science Gateway is a community-developed set of tools, 
applications, and data collections that are integrated via a 

portal or a suite of applications. Gateways provide access to a 
variety of capabilities including workflows, visualization, 
resource discovery and job execution services through a 
browser-based user interface (which can arguably hide much 
of the complexities). Scientific gateways are beginning to 
adopt a wide variety of Web 2.0 technologies, but to date, 
much of the developments in Grids and Web 2.0 have been 
made in parallel with little interaction between them. These 
new technologies are important enhancements to the ways 
gateways interact with services and provide rich user 
interactivity. Although scientific gateways have only emerged 
in Grids recently, Clouds seem to have adopted the use of 
gateways to Cloud resources almost exclusively for end-user 
interaction. The browser and Web 2.0 technologies will 
undoubtedly play a central role on how users will interact with 
Grids and Clouds in the future. 

2.6 Security Model 
Clouds mostly comprise dedicated data centers belonging to 
the same organization, and within each data center, hardware 
and software configurations, and supporting platforms are in 
general more homogeneous as compared with those in Grid 
environments. Interoperability can become a serious issue for 
cross-data center, cross-administration domain interactions, 
imagine running your accounting service in Amazon EC2 
while your other business operations on Google infrastructure. 
Grids however build on the assumption that resources are 
heterogeneous and dynamic, and each Grid site may have its 
own administration domain and operation autonomy. Thus, 
security has been engineered in the fundamental Grid 
infrastructure. The key issues considered are: single sign-on, 
so that users can log on only once and have access to multiple 
Grid sites, this will also facilitate accounting and auditing; 
delegation, so that a program can be authorized to access 
resources on a user’s behalf and it can further delegate to other 
programs; privacy, integrity and segregation, resources 
belonging to one user cannot be accessed by unauthorized 
users, and cannot be tampered during transfer; coordinated 
resource allocation, reservation, and sharing, taking into 
consideration of both global and local resource usage policies. 
The public-key based GSI (Grid Security Infrastructure) 
protocols are used for authentication, communication 
protection, and authorization. Furthermore, CAS (Community 
Authorization Service) is designed for advanced resource 
authorization within and across communities. Gruber (A Grid 
Resource Usage SLA Broker) [14] is an example that has 
distributed policy enforcement points to enforce both local 
usage policies and global SLAs (Service Level Agreement), 
which allows resources at individual sites to be efficiently 
shared in multi-site, multi-VO environments.  

Currently, the security model for Clouds seems to be relatively 
simpler and less secure than the security model adopted by 
Grids. Cloud infrastructure typically rely on Web forms (over 
SSL) to create and manage account information for end-users, 
and allows users to reset their passwords and receive new 
passwords via Emails in an unsafe and unencrypted 
communication. Note that new users could use Clouds 
relatively easily and almost instantly, with a credit card and/or 
email address. To contrast this, Grids are stricter about its 
security. For example, although web forms are used to manage 



user accounts, sensitive information about new accounts and 
passwords requires also a person to person conversation to 
verify the person, perhaps verification from a sponsoring 
person who already has an account, and passwords will only be 
faxed or mailed, but under no circumstance will they be 
emailed. The Grid approach to security might be more time 
consuming, but it adds an extra level of security to help 
prevent unauthorized access.  

Security is one of the largest concerns for the adoption of 
Cloud Computing. We outline seven risks a Cloud user should 
raise with vendors before committing [6]: 1) Privileged user 
access: sensitive data processed outside the enterprise needs 
the assurance that they are only accessible and propagated to 
privileged users; 2) Regulatory compliance: a customer needs 
to verify if a Cloud provider has external audits and security 
certifications and if their infrastructure complies with some 
regulatory security requirements; 3) Data location: since a 
customer will not know where her data will be stored, it is 
important that the Cloud provider commit to storing and 
processing data in specific jurisdictions and to obey local 
privacy requirements on behalf of the customer; 4) Data 
segregation: one needs to ensure that one customer’s data is 
fully segregated from another customer’s data; 5) Recovery: it 
is important that the Cloud provider has an efficient replication 
and recovery mechanism to restore data if a disaster occurs; 6) 
Investigative support: Cloud services are especially difficult to 
investigate, if this is important for a customer, then such 
support needs to be ensured with a contractual commitment; 
and 7) Long-term viability: your data should be viable even the 
Cloud provider is acquired by another company. 

3 Conclusions and lights to the future 
In this paper, we show that Clouds and Grids share a lot 
commonality in their vision, architecture and technology, but 
they also differ in various aspects such as security, 
programming model, business model, compute model, data 
model, applications, and abstractions. We also identify 
challenges and opportunities in both fields. We believe a close 
comparison such as this can help the two communities 
understand, share and evolve infrastructure and technology 
within and across, and accelerate Cloud Computing from early 
prototypes to production systems.  

What does the future hold? We will hazard a few predictions, 
based on our beliefs that the economics of computing will look 
more and more like those of energy. Neither the energy nor the 
computing grids of tomorrow will look like yesterday’s 
electric power grid. Both will move towards a mix of micro-
production and large utilities, with increasing numbers of 
small-scale producers (wind, solar, biomass, etc., for energy; 
for computing, local clusters and embedded processors—in 
shoes and walls) co-existing with large-scale regional 
producers, and load being distributed among them dynamically. 
Yes, computing isn’t really like electricity, but we do believe 
that we will nevertheless see parallel evolution, driven by 
similar forces. 

In building this distributed “Cloud” or “Grid”, we will need to 
support on-demand provisioning and configuration of 
integrated “virtual systems” providing the precise capabilities 
needed by an end-user. We will need to define protocols that 

allow users and service providers to discover and hand off 
demands to other providers, to monitor and manage their 
reservations, and arrange payment. We will need tools for 
managing both the underlying resources and the resulting 
distributed computations. We will need the centralized scale of 
today’s Cloud utilities, and the distribution and interoperability 
of today’s Grid facilities. 

Unfortunately, at least to date, the methods used to achieve 
these goals in today’s commercial clouds have not been open 
and general purpose, but instead been mostly proprietary and 
specialized for the specific internal uses (e.g., large-scale data 
analysis) of the companies that developed them. The idea that 
we might want to enable interoperability between providers (as 
in the electric power grid) has not yet surfaced. Grid 
technologies and protocols speak precisely to these issues, and 
should be considered.   

Some of the required protocols and tools will come from the 
smart people from the industry at Amazon, Google, Yahoo, 
Microsoft, and IBM. Others will come from the smart people 
from academia and government labs. Others will come from 
those creating whatever we call this stuff after Grid and Cloud. 
It will be interesting to see to what extent these different 
communities manage to find common cause, or instead 
proceed along parallel paths. 
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